4. Electric Charge
1. If you throw the electric charges and quarks together at random, you get no atoms and a dead universe.
2. So in fact, the electric charges and quarks were was not thrown together at random, but selected carefully to permit stable atoms, and a life-permitting universe.
3. Of course, we can appeal to physics that we don't even know, and posit a multiverse, and that random shuffling of these fundamental constants did permit that one emerged permitting a functional outcome, but that would just be a multiverse of the gaps argument.
4. The best explanation is that an intelligent designer created the right constants, fundamental forces, charges, colors etc. that produced stable atoms, and a life-permitting universe for his own purposes.
A World of Electrons
Electrons, being so small and light may seem remote and abstract, but the world we know is primarily the world of electrons.
The light we see is emitted by electrons. Sounds we hear are carried by electrons bouncing off each other. Tastes and smells we experience are caused by chemical reactions driven by electrons. Every time we touch something we feel the repulsion of that thing’s electrons. In both plasma globes and lightning bolts, the path of electrons is visible.
Every chemical reaction is activity between electrons. Accordingly, the properties of elements, the compounds they can form, their level of reactivity, all of it, is determined by the properties of electrons.
If the mass or charge of electrons had different values, all of chemistry would change. For example, if electrons were heavier, atoms would be smaller and bonds would require more energy. If electrons were too heavy there would be no chemical bonding at all.
If electrons were much lighter, bonds would be too weak to form stable molecules like proteins and DNA. Visible and infrared light would become ionizing radiation. They would be as harmful as X-rays and UV are to us now. Our own body heat would damage our DNA.
Luckily for us, electrons weigh just enough to yield a stable, but not sterile chemistry.
Stephen Hawking in “A Brief History of Time” (1988)
The laws of science, as we know them at present, contain many fundamental numbers, like the size of the electric charge of the electron and the ratio of the masses of the proton and the electron. […]
The remarkable fact is that the values of these numbers seem to have been very finely adjusted to make possible the development of life. For example, if the electric charge of the electron had been only slightly different, stars either would have been unable to burn hydrogen and helium, or else they would not have exploded.
A Starless Universe
Electrons are very light compared to the protons and neutrons:
The proton’s mass mp is 1,836.15 times the mass of an electron me
The neutron’s mass mn is 1,838.68 times the mass of an electron me
In a ton of coal, the electrons contribute little more than half a pound.
We’ve seen how electron weight is of critical importance to chemistry. But so too are masses of other particles. It was important that:
Protons and neutrons be close in weight: mp ≈ mn
Yet differ in mass by more than one electron: |mp − mn| > me
And also that neutrons be heavier than protons: mn > mp
As it happens, all three of these conditions hold true. Had any of them not been met we end up with a universe devoid of life.
https://alwaysasking.com/is-the-universe-fine-tuned/
Sergey Shevchenko Institute of Physics of the National Academy of Science of Ukraine
“…"Charge" is a POSTULATE used to explain some experimental observations…”
- that is, of course, so, though that completely relates to
“….. So, the characteristics of "charge" derive from the experiments that went into Maxwell's (and similar) sets of equations….”
also: Maxwell equations are also ad hoc postulates that are derived from experiments of Ampere, Faraday, etc., aimed at to fit the theory with experiment.
As that is in all physics – every theory eventually is fitting of some mathematical constructions with experimental data, in any physical theory the Meta-physical phenomena/notions/objects not only “charge”, but also, say, “a particle”, “mass”, “Energy”, etc. are only ad hoc non-explainable mathematical values.
Again – see the SS post above, these phenomena can be, and are, clarified only in the SS&VT “The Information as Absolute” conception [the link see the post], where it is rigorously proven that everything is some informational patterns/systems of the patterns.
So, including “charge” is nothing else than some informational logical construction that exchange by information with other logical constructions in accordance with the basal set of laws/links/constants on which the whole information system “Matter” is organized, and changes/evolves.
So now there is no Meta-physical problems, the problems are purely technique – how correctly decode/translate onto human’s language some informational constructions that “are written” on some unknown for humans language; i.e. physics principally doesn’t differ from, say, a case when some Egyptologist decode some wording on some antic Egypt sarcophagus.
The next important inference that follows from the conception is in that so there is nothing surprising when some humans correctly decode information in Matter, and, since the Matter’s basal set above provides – and had provided, resulting in a huge diversity of material objects and systems of the objects, which are based on some next levels sets of laws/links/constants, to decode these laws/links/constants having practically no understanding about what the utmost fundamental and universal Matter’s basal set is – just that is the number of the physical theories that are adequate to the objective reality.
https://www.researchgate.net/post/Where-do-electrons-and-protons-get-their-charge-from
Leonard Susskind The Cosmic Landscape: String Theory and the Illusion of Intelligent Design 2006
The quark masses vary over a huge range from roughly 10 electron masses for the up-and down-quarks to 344,000 electron masses for the top-quark. Physicists puzzled for some time about why the top-quark is so heavy, but recently we have come to understand that it’s not the top-quark that is abnormal: it’s the up-and-down-quarks that are absurdly light. The fact that they are roughly twenty thousand times lighter than particles like the Z-boson and the W-boson is what needs an explanation. The Standard Model has not provided one. Thus, we can ask what the world would be like if the up-and-down quarks were much heavier than they are. Once again—disaster! Protons and neutrons are made of up-and down-quarks. According to the quark theory of protons and neutrons, the nuclear force (force between nucleons) can be traced to quarks hopping back and forth between these nucleons. If the quarks were much heavier, it would be much more difficult to exchange them, and the nuclear force would practically disappear. With no sticky flypaper force holding the nucleus together, there could be no chemistry. Luck is with us again.
https://3lib.net/book/2472017/1d5be1
Anjan Sadhukhan QUANTIZED CHARGE & FRACTIONAL CHARGE: FEW FACTS, FINDINGS AND NEW IDEAS June 3, 2020
The physical world around us is made up of different atoms and molecules which are the building blocks of the Universe. Molecules are the collection of atoms and atoms are consisting of neutral neutrons, negatively charged electrons, and an equal number of positively charged protons. Atoms are effectively charged neutral. However, any system possessing an unequal number of electrons and protons is referred to as the ionic system.
What is charge?
The charge on the electron is a fundamental constant of nature.
https://openstax.org/books/physics/pages/18-1-electrical-charges-conservation-of-charge-and-transfer-of-charge
It is one of the most fundamental questions of nature. Like mass, charge is also a physical property. If we place an object in the gravitational field, due to “mass” it will experience force. In the same way, a charged particle experiences force in the electromagnetic field due to the presence of “charge” in it. It’s well accepted that e is the smallest available independent charge in the physical world. However, the composite particles like neutrons and protons are made up of some elementary particles called ‘quarks’ having smaller charges, multiple of e/3.
https://adamasuniversity.ac.in/quantized-charge-fractional-charge-few-facts-findings-and-new-ideas/
It's as if an electron says: hey quarks, let's team up, let's make an atom. Quarks: Hey, great idea, how much electric charge do you have? (Let's call it e). OK so we will team up of three of us, so we will just take each of us -1/3 or 2/3 of your charge. Electron says: Great!, I feel it, this way we can have a stable atom. Quarks: Great! ( Or maybe it was rather their creator thinking about that, in order to make, in the end, you and me ?! ) It seems that the quarks teamed up exactly so three of them can cancel out (attract) exactly the electron's electric charge. Now, here is the thing: More elaborate composite nucleon models can have constituent partons with other rational multiples, and eventually not cancel out with the charge of the electron, and there would be no stable atoms, but ions, and no molecules, and life in the universe !! Composite particles could result in fractional charges. For example, 2 quarks and one anti-quark could sum up and result in a fractional charge ( 1/3).
So is this state of affairs coincidence, or the result of the thoughts of our wise creator?
Q & A: Quarks and Fractional Charges 12/28/2009
Protons have charge +1, and electrons, -1, using units of e. The charge of an atom or composite particle is found by adding the charges of its protons and electrons (since neutrons are electrically neutral). Therefore, the charges of such particles are integer values. However, there are subatomic particles with fractional charges. It turns out that protons and neutrons are composed of particles called "quarks." These quarks, which come in different "flavors" (up, down, charm, strange, top, bottom) make up certain particles. They have fractional charge. Up, charm, and top all have fractional charge of +2/3, while down, strange, and bottom all have a charge of -1/3. Protons are composed of two up quarks and one down quark, so the total charge is +1. Likewise, neutrons are composed of two down quarks and one up quark, so the total charge is 0. Quarks are confined to the particles they compose. This is, appropriately, referred to as "confinement." This is why we don't observe quarks--and therefore their fractional charges--outside their composite particles (such as protons and neutrons).
https://van.physics.illinois.edu/qa/listing.php?id=15151&t=quarks-and-fractional-charges
Quarks have a real fraction of the elementary charge (-1/3 or 2/3). Baryons are made up of three quarks, and that those quarks can have -1/3 or 2/3 the elementary charge. This way, the quarks can combine so that the Baryon will have an integer of the elementary charge. This way, the nucleus, and the electron can be in a stable atomic state, where their electric charges cancel (attract) exactly. Any other way, the atom would not be stable.
In reality, the charge of the electron is not an integer, it is 1.6021765 × 10−19 coulomb, or 4.80320451 × 10−10 electrostatic unit (esu, or statcoulomb). Any amount of charge is nothing but the integer multiple of small units of charge, called the elementary charge, e, which is equal to Coulomb (SI unit of charge). The interaction between charged objects is a non-contact force that acts over some distance of separation.
https://www.physicsclassroom.com/class/estatics/Lesson-3/Coulomb-s-Law
In particle physics and physical cosmology, Planck units are a set of units of measurement defined exclusively in terms of four universal physical constants, in such a manner that these physical constants take on the numerical value of 1 when expressed in terms of these units.
https://en.wikipedia.org/wiki/Planck_units
The electromagnetic force is the Coulomb interaction. This is the familiar law that says that like charges repel each and opposites attract. This law alone dominates the interactions between essentially all objects larger than an atomic nucleus (10−15 meters) and smaller than a planet (10^7 meters).
https://www.ribbonfarm.com/2015/06/23/where-do-electric-forces-come-from/
Where do quarks get their charge?
Science has no answer to why nature uses certain fundamental rules and physical laws and not some other rules that we can conceive. That is probably a question best left to priests or philosophers. For example, the electric charge is an intrinsic property of charged particles and it comes in 2 flavors: positive and negative. Even scientists don’t know where it comes from; it’s something that’s observed and measured. It gets worse: nobody knows how let alone why opposite charges attract and similar charges repel according to Coulomb’s law.
Those are the basic rules of Nature that we discovered. We don’t know why these are the rules. And unless we find a more fundamental rule from which these rules are deduced, we will never know the answer to that why question (and even then, we’d just replace one why with another.)
Bill C. Riemers Ph.D. Experimental High Energy Physics, Purdue University July 17, 2016
The smallest observable NET charge for a charged set of quarks is 1. But the quarks that make up the group have a fractional charge. This is far more of a complex result than anyone would have ever reasonably expected. But it is 100% consistent experimental observations. My best answer as to why quarks have a fraction charge is if there is a GOD, then GOD is both extremely clever and GOD has a really twisted sense of humor (as this seems like an Easter Egg in the laws of physics.) God also seems to appreciate the beauty of higher mathematics.
[url=https://www.quora.com/Where-do-quarks-get-their-charge#:~:text=In general particles either have,make the baryons and mesons]https://www.quora.com/Where-do-quarks-get-their-charge#:~:text=In%20general%20particles%20either%20have,make%20the%20baryons%20and%20mesons[/url]
Closer to truth: WHY COSMIC FINE-TUNING DEMANDS EXPLANATION
The electric charge on the proton is exactly equal and opposite to that of the electron to as many decimal places as you care to measure. This is more than slightly anomalous in that the proton and the electron share nothing else in common. The proton is not a fundamental particle (it is composed in turn of a trilogy of quarks), but the electron is a fundamental particle. The proton's mass is 1836 times greater than that of the electron. So how come their electric charges are equal and opposite? Why is it so? There is no reason why this state of affairs could not be different! Actually, there is an infinite number of possible different arrangements which would prohibit setting up stable atoms. Why is the electric charge on the electron is exactly equal and opposite to that of the positron, the positron being the electron's antimatter opposite? That equal but opposite charge is again verified to as many decimal places as one can calculate. So that means the electric charge on the proton and the electric charge on the positron are exactly the same, yet apart from that, the two entities are as alike as chalk and cheese. Why is it for this electric charge equality between different kinds of particles?
https://www.closertotruth.com/series/why-cosmic-fine-tuning-demands-explanation
Jason Waller Cosmological Fine-Tuning Arguments 2020, page 100
Fine-Tuning in Particle Physics What would happen to our universe if we changed the masses of the up quark, down quark, and electron? What would happen to our universe if we change the strengths of the fundamental forces? And what would happen to our universe if we eliminated one of the four fundamental forces (gravity, electromagnetism, strong force, weak force)? In each of these cases, even relatively minor changes would make the existence of intelligent organic life (along with almost everything else in our universe!) impossible. “The neutron-to-proton mass ratio is 1.00137841870, which looks . . . uninspiring. Physically this means that the proton has very nearly the same mass as the neutron, which . . . is about 0.1 percent heavier”. At first, it may seem as though nothing of significance hangs on this small difference. But that is wrong. All of life depends on it. The fact that the neutron’s mass is coincidentally just a little bit more than the combined mass of the proton, electron, and neutrino is what enables neutrons to decay. . . . If the neutron were lighter . . . yet only by a fraction of 1 percent, it would have less mass than the proton, and the tables would be turned: isolated protons, rather than neutrons, would be unstable. Isolated neutrons will decay within about fifteen minutes because particles tend toward the lowest possible energy consistent with the conservations laws. Given this tendency of fundamental particles, the slightly higher mass of the neutron means that the proton “is the lightest particle made from three quarks. The proton is stable because there is no lighter baryon to decay into. The ability of the proton to survive for an extended period without decaying is essential for the existence of life. In the early universe, there was a “hot, dense soup of particles and radiation,” and as the universe began to cool, the heavier elements decayed into protons and neutrons. The Universe managed to lock some neutrons away inside nuclei in the first few minutes before they decayed. Isolated protons were still important chemically because they could interact with electrons. In fact, a single proton is taken as an element even in the absence of any electrons—it is called hydrogen. But now imagine an alternative physics where the neutron was less massive, then free protons would decay into neutrons and positrons, with disastrous consequences for life, because without protons there could be no atoms and no chemistry. Neutrons are electrically neutral and so will not interact with electrons. That means a universe dominated by neutrons would have almost no interesting chemistry. A decrease in the neutron’s mass by 0.8 MeV would entail an “initially all neutron universe. It is rather easy to arrange a universe to have no chemistry at all. If we examine a range of different possible masses for the up and down quarks (and so the proton and neutron), we can conclude that almost all changes lead to universes with no chemistry. Thus, there are firm and fairly narrow limits on the relative masses of the up and down quarks if our universe is going to have any interesting chemistry.