How secret conversations inside cells are transforming biology
https://www.nature.com/articles/d41586-019-00792-9?fbclid=IwAR29hcF-kTvWS9kJjWBw7idEJeAS1qkKVR4dA1YsL3oI_ZG2JZpGvFq3Bak
Interactions between organelles are ubiquitous, with almost every type coming into close conversation with every other type. Probing those connections is also leading biologists to discover proteins that are responsible for holding the organelles together and maintaining a healthy cell.
The updated view of organelle crosstalk is forcing a dramatic rethink of cell biology. “There’s a whole other layer of communication that’s going on within these organelles,” says Jennifer Lippincott-Schwartz, a cell biologist at the Howard Hughes Medical Institute’s Janelia Research Campus in Ashburn, Virginia, whose team has been recording dazzling video footage of these affairs.
Thanks to advances in imaging technologies, researchers can now see pairs of organelles bound together just 10–30 nanometres apart, close enough that even the smallest viruses would have a tough time squeezing between them. The junctures form links for swapping lipids, ions and other molecular wares. Break those links, however, and the cellular dysfunction that follows can lead to cancer, diabetes, Alzheimer’s disease and various other disorders.
https://www.nature.com/articles/d41586-019-00792-9?fbclid=IwAR29hcF-kTvWS9kJjWBw7idEJeAS1qkKVR4dA1YsL3oI_ZG2JZpGvFq3Bak
Interactions between organelles are ubiquitous, with almost every type coming into close conversation with every other type. Probing those connections is also leading biologists to discover proteins that are responsible for holding the organelles together and maintaining a healthy cell.
The updated view of organelle crosstalk is forcing a dramatic rethink of cell biology. “There’s a whole other layer of communication that’s going on within these organelles,” says Jennifer Lippincott-Schwartz, a cell biologist at the Howard Hughes Medical Institute’s Janelia Research Campus in Ashburn, Virginia, whose team has been recording dazzling video footage of these affairs.
Thanks to advances in imaging technologies, researchers can now see pairs of organelles bound together just 10–30 nanometres apart, close enough that even the smallest viruses would have a tough time squeezing between them. The junctures form links for swapping lipids, ions and other molecular wares. Break those links, however, and the cellular dysfunction that follows can lead to cancer, diabetes, Alzheimer’s disease and various other disorders.