Interdependence of the promoter region in DNA, transcription factors, and RNA polymerase II
http://reasonandscience.heavenforum.org/t2038-interdependence-of-the-promoter-region-in-dna-transcription-factors-and-rna-polymerase-ii
Transcription is the process of making RNA from a DNA template. Several key factors are involved in this process. Including, DNA, transcription factors, RNA polymerase, and ATP. This is a irreducible complex system. DNA, transcription factors, RNA polymerase, and ATP must be present, otherwise transcription cannot occur. What came first, the TATA Box in the promoter region in DNA, or transcription factors, controlling the rate of transcription of genetic information from DNA to messenger RNA ? What use does one have without the other ? Both must have come into existence in the right exact time. And the RNA polymerase machine as well, since the other two without it have no function either. That is extremely sophisticated, interdependenet machinery that had to come into existence all at once. Thats best explained through a designer. There are many more molecular machines involved in the process, namely additional proteins such as coactivators, chromatin remodelers, histone acetylases, deacetylases, kinases, and methylases etc..... this is a interdependent, highly coordinated complex machinery, where the single parts have no use, unless in conjunction with all other parts. This is one more prima facie example of intelligent design in micro biology.
In genetics, a promoter is a region of DNA that initiates transcription of a particular gene. 1
For the transcription to take place, the enzyme that synthesizes RNA, known as RNA polymerase, must attach to the DNA near a gene. Promoters contain specific DNA sequences such as response elements that provide a secure initial binding site for RNA polymerase and for proteins called transcription factors that recruit RNA polymerase. These transcription factors have specific activator or repressor sequences of corresponding nucleotides that attach to specific promoters and regulate gene expression.
In eukariotic cells, the response elements in promoter regions are Pribnow box, TATA box, BRE, CAAT box
1) http://en.wikipedia.org/wiki/Promoter_%28genetics%29
http://reasonandscience.heavenforum.org/t2038-interdependence-of-the-promoter-region-in-dna-transcription-factors-and-rna-polymerase-ii
Transcription is the process of making RNA from a DNA template. Several key factors are involved in this process. Including, DNA, transcription factors, RNA polymerase, and ATP. This is a irreducible complex system. DNA, transcription factors, RNA polymerase, and ATP must be present, otherwise transcription cannot occur. What came first, the TATA Box in the promoter region in DNA, or transcription factors, controlling the rate of transcription of genetic information from DNA to messenger RNA ? What use does one have without the other ? Both must have come into existence in the right exact time. And the RNA polymerase machine as well, since the other two without it have no function either. That is extremely sophisticated, interdependenet machinery that had to come into existence all at once. Thats best explained through a designer. There are many more molecular machines involved in the process, namely additional proteins such as coactivators, chromatin remodelers, histone acetylases, deacetylases, kinases, and methylases etc..... this is a interdependent, highly coordinated complex machinery, where the single parts have no use, unless in conjunction with all other parts. This is one more prima facie example of intelligent design in micro biology.
In genetics, a promoter is a region of DNA that initiates transcription of a particular gene. 1
For the transcription to take place, the enzyme that synthesizes RNA, known as RNA polymerase, must attach to the DNA near a gene. Promoters contain specific DNA sequences such as response elements that provide a secure initial binding site for RNA polymerase and for proteins called transcription factors that recruit RNA polymerase. These transcription factors have specific activator or repressor sequences of corresponding nucleotides that attach to specific promoters and regulate gene expression.
In eukariotic cells, the response elements in promoter regions are Pribnow box, TATA box, BRE, CAAT box
1) http://en.wikipedia.org/wiki/Promoter_%28genetics%29