Life - Its Sudden Origin and Extreme Complexity - Dr. Fazale Rana
https://vimeo.com/92492805
"Information is information, not matter or energy. No materialism which does not admit this can survive at the present day."
Norbert Weiner - MIT Mathematician - Father of Cybernetics
Materialists have tried to get around this crushing evidence for the sudden appearance of life by suggesting life could originate in extreme conditions. Yet they are betrayed once again by the empirical evidence:
Refutation Of Hyperthermophile Origin Of Life scenario
Excerpt: While life, if appropriately designed, can survive under extreme physical and chemical conditions, it cannot originate under those conditions. High temperatures are especially catastrophic for evolutionary models. The higher the temperature climbs, the shorter the half-life for all the crucial building block molecules, http://www.reasons.org/LateHeavyBombardmentIntensityandtheOriginofLife
Chemist explores the membranous origins of the first living cell:
Excerpt: Conditions in geothermal springs and similar extreme environments just do not favor membrane formation, which is inhibited or disrupted by acidity, dissolved salts, high temperatures, and calcium, iron, and magnesium ions. Furthermore, mineral surfaces in these clay-lined pools tend to remove phosphates and organic chemicals from the solution. "We have to face up to the biophysical facts of life," Deamer said. "Hot, acidic hydrothermal systems are not conducive to self-assembly processes."
http://currents.ucsc.edu/05-06/04-03/deamer.asp
The evidence scientists have discovered in the geologic record is stunning in its support of the anthropic hypothesis. The oldest sedimentary rocks on earth, known to science, originated underwater (and thus in relatively cool environs) 3.86 billion years ago. Those sediments, which are exposed at Isua in southwestern Greenland, also contain the earliest chemical evidence (fingerprint) of “photosynthetic” life [Nov. 7, 1996, Nature]. This evidence had been fought by materialists since it is totally contrary to their evolutionary theory. Yet, Danish scientists were able to bring forth another line of geological evidence to substantiate the primary line of geological evidence for photo-synthetic life in the earth’s earliest sedimentary rocks (U-rich Archaean sea-floor sediments from Greenland - indications of +3700 Ma oxygenic photosynthesis (2003). Thus we now have conclusive evidence for photo-synthetic life in the oldest sedimentary rocks ever found by scientists on earth. The simplest photosynthetic bacterial life on earth is exceedingly complex, too complex to happen by accident even if the primeval oceans had been full of pre-biotic soup.
The Miracle Of Photosynthesis - electron transport - video
https://www.youtube.com/watch?v=hj_WKgnL6MI
Evolution vs ATP Synthase - Molecular Machine - video
http://www.metacafe.com/watch/4012706/evolution_vs_atp_synthase_molecular_machine/
Electron transport and ATP synthesis during photosynthesis - Illustration
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=cooper.figgrp.1672
Evolutionary biology: Out of thin air John F. Allen & William Martin:
The measure of the problem is here: “Oxygenetic photosynthesis involves about 100 proteins that are highly ordered within the photosynthetic membranes of the cell." http://www.nature.com/nature/journal/v445/n7128/full/445610a.html
Estimating the prevalence of protein sequences adopting functional enzyme folds: Doug Axe:
Excerpt: Starting with a weakly functional sequence carrying this signature, clusters of ten side-chains within the fold are replaced randomly, within the boundaries of the signature, and tested for function. The prevalence of low-level function in four such experiments indicates that roughly one in 10^64 signature-consistent sequences forms a working domain. Combined with the estimated prevalence of plausible hydropathic patterns (for any fold) and of relevant folds for particular functions, this implies the overall prevalence of sequences performing a specific function by any domain-sized fold may be as low as 1 in 10^77, adding to the body of evidence that functional folds require highly extraordinary sequences. http://www.ncbi.nlm.nih.gov/pubmed/15321723
Evolution vs. Functional Proteins - Doug Axe - Video
http://www.metacafe.com/watch/4018222/evolution_vs_functional_proteins_where_did_the_information_come_from_doug_axe_stephen_meyer/
Of note: anoxygenic (without oxygen) photosynthesis is even more of a complex chemical pathway than oxygenic photosynthesis is:
"Remarkably, the biosynthetic routes needed to make the key molecular component of anoxygenic photosynthesis are more complex than the pathways that produce the corresponding component required for the oxygenic form."; Hugh Ross
also of note: Anaerobic organisms and most viruses are quickly destroyed by direct contact with oxygen.
"There is no question about photosynthesis being Irreducibly Complex. But it’s worse than that from an evolutionary perspective. There are 17 enzymes alone involved in the synthesis of chlorophyll. Are we to believe that all intermediates had selective value? Not when some of them form triplet states that have the same effect as free radicals like O2. In addition if chlorophyll evolved before antenna proteins, whose function is to bind chlorophyll, then chlorophyll would be toxic to cells. Yet the binding function explains the selective value of antenna proteins. Why would such proteins evolve prior to chlorophyll? and if they did not, how would cells survive chlorophyll until they did?" Uncommon Descent Blogger
Interestingly, while the photo-synthetic bacteria were reducing greenhouse gases and producing oxygen, and metal, and minerals, which would all be of benefit to modern man, "sulfate-reducing" bacteria were also producing their own natural resources which would be very useful to modern man. Sulfate-reducing bacteria helped prepare the earth for advanced life by detoxifying the primeval earth and oceans of poisonous levels of heavy metals while depositing them as relatively inert metal ores. Metal ores which are very useful for modern man, as well as fairly easy for man to extract today (mercury, cadmium, zinc, cobalt, arsenic, chromate, tellurium and copper to name a few). To this day, sulfate-reducing bacteria maintain an essential minimal level of these heavy metals in the ecosystem which are high enough so as to be available to the biological systems of the higher life forms that need them yet low enough so as not to be poisonous to those very same higher life forms.
Bacterial Heavy Metal Detoxification and Resistance Systems:
Excerpt: Bacterial plasmids contain genetic determinants for resistance systems for Hg2+ (and organomercurials), Cd2+, AsO2, AsO43-, CrO4 2-, TeO3 2-, Cu2+, Ag+, Co2+, Pb2+, and other metals of environmental concern.
http://www.springerlink.com/content/u1t281704577v8t3/
http://www.int-res.com/articles/meps/26/m026p203.pdf
Even this recent "evolution friendly" article readily admits the staggering level of complexity required for the "first" cell:
Was our oldest ancestor a proton-powered rock? - Oct. 2009
Excerpt: “There is no doubt that the progenitor of all life on Earth, the common ancestor, possessed DNA, RNA and proteins, a universal genetic code, ribosomes (the protein-building factories), ATP and a proton-powered enzyme for making ATP. The detailed mechanisms for reading off DNA and converting genes into proteins were also in place. In short, then, the last common ancestor of all life looks pretty much like a modern cell.”
http://www.newscientist.com/article/mg20427306.200-was-our-oldest-ancestor-a-protonpowered-rock.html
Journey Inside The Cell - DNA to mRNA to Proteins - Stephen Meyer - Signature In The Cell - video
https://www.youtube.com/watch?v=1fiJupfbSpg
Signature in the Cell - Book Review - Ken Peterson
Excerpt: the “simplest extant cell, Mycoplasma genitalium — a tiny bacterium that inhabits the human urinary tract — requires ‘only’ 482 proteins to perform its necessary functions…(562,000 bases of DNA…to assemble those proteins).” ,,, amino acids have to congregate in a definite specified sequence in order to make something that “works.” First of all they have to form a “peptide” bond and this seems to only happen about half the time in experiments. Thus, the probability of building a chain of 150 amino acids containing only peptide links is about one chance in 10 to the 45th power.
In addition, another requirement for living things is that the amino acids must be the “left-handed” version. But in “abiotic amino-acid production” the right- and left-handed versions are equally created. Thus, to have only left-handed, only peptide bonds between amino acids in a chain of 150 would be about one chance in 10 to the 90th. Moreover, in order to create a functioning protein the “amino acids, like letters in a meaningful sentence, must link up in functionally specified sequential arrangements.” It turns out that the probability for this is about one in 10 to the 74th. Thus, the probability of one functional protein of 150 amino acids forming by random chance is (1 in) 10 to the 164th. If we assume some minimally complex cell requires 250 different proteins then the probability of this arrangement happening purely by chance is one in 10 to the 164th multiplied by itself 250 times or one in 10 to the 41,000th power.
http://www.spectrummagazine.org/reviews/book_reviews/2009/10/06/signature_cell
"No man-made program comes close to the technical brilliance of even Mycoplasmal genetic algorithms. Mycoplasmas are the simplest known organism with the smallest known genome, to date. How was its genome and other living organisms' genomes programmed?" - David L. Abel and Jack T. Trevors, “Three Subsets of Sequence Complexity and Their Relevance to Biopolymeric Information,” Theoretical Biology & Medical Modelling, Vol. 2, 11 August 2005, page 8
http://www.biomedcentral.com/content/pdf/1742-4682-2-29.pdf
First-Ever Blueprint of 'Minimal Cell' Is More Complex Than Expected - Nov. 2009
Excerpt: A network of research groups,, approached the bacterium at three different levels. One team of scientists described M. pneumoniae's transcriptome, identifying all the RNA molecules, or transcripts, produced from its DNA, under various environmental conditions. Another defined all the metabolic reactions that occurred in it, collectively known as its metabolome, under the same conditions. A third team identified every multi-protein complex the bacterium produced, thus characterising its proteome organisation.
"At all three levels, we found M. pneumoniae was more complex than we expected,"
http://www.sciencedaily.com/releases/2009/11/091126173027.htm
Intelligent Design or Evolution? Stuart Pullen
The chemical origin of life is the most vexing problem for naturalistic theories of life's origins. Despite an intense 50 years of research, how life can arise from non-life through naturalistic processes is as much a mystery today as it was fifty years ago, if not more.
http://www.arn.org/arnproducts/php/book_show_item.php?id=106
On The Origin Of Life And God - Henry F. Schaefer, III PhD. - video
http://www.metacafe.com/watch/4018204/the_origin_of_life_and_god_henry_fritz_schaefer_phd/
By the way, there is a one million dollar "Origin-of-Life" prize being offered:
"The Origin-of-Life Prize" ® (hereafter called "the Prize") will be awarded for proposing a highly plausible mechanism for the spontaneous rise of genetic instructions in nature sufficient to give rise to life.
http://www.us.net/life/index.htm
Intelligent Design - The Anthropic Hypothesis
http://lettherebelight-77.blogspot.com/
https://vimeo.com/92492805
"Information is information, not matter or energy. No materialism which does not admit this can survive at the present day."
Norbert Weiner - MIT Mathematician - Father of Cybernetics
Materialists have tried to get around this crushing evidence for the sudden appearance of life by suggesting life could originate in extreme conditions. Yet they are betrayed once again by the empirical evidence:
Refutation Of Hyperthermophile Origin Of Life scenario
Excerpt: While life, if appropriately designed, can survive under extreme physical and chemical conditions, it cannot originate under those conditions. High temperatures are especially catastrophic for evolutionary models. The higher the temperature climbs, the shorter the half-life for all the crucial building block molecules, http://www.reasons.org/LateHeavyBombardmentIntensityandtheOriginofLife
Chemist explores the membranous origins of the first living cell:
Excerpt: Conditions in geothermal springs and similar extreme environments just do not favor membrane formation, which is inhibited or disrupted by acidity, dissolved salts, high temperatures, and calcium, iron, and magnesium ions. Furthermore, mineral surfaces in these clay-lined pools tend to remove phosphates and organic chemicals from the solution. "We have to face up to the biophysical facts of life," Deamer said. "Hot, acidic hydrothermal systems are not conducive to self-assembly processes."
http://currents.ucsc.edu/05-06/04-03/deamer.asp
The evidence scientists have discovered in the geologic record is stunning in its support of the anthropic hypothesis. The oldest sedimentary rocks on earth, known to science, originated underwater (and thus in relatively cool environs) 3.86 billion years ago. Those sediments, which are exposed at Isua in southwestern Greenland, also contain the earliest chemical evidence (fingerprint) of “photosynthetic” life [Nov. 7, 1996, Nature]. This evidence had been fought by materialists since it is totally contrary to their evolutionary theory. Yet, Danish scientists were able to bring forth another line of geological evidence to substantiate the primary line of geological evidence for photo-synthetic life in the earth’s earliest sedimentary rocks (U-rich Archaean sea-floor sediments from Greenland - indications of +3700 Ma oxygenic photosynthesis (2003). Thus we now have conclusive evidence for photo-synthetic life in the oldest sedimentary rocks ever found by scientists on earth. The simplest photosynthetic bacterial life on earth is exceedingly complex, too complex to happen by accident even if the primeval oceans had been full of pre-biotic soup.
The Miracle Of Photosynthesis - electron transport - video
https://www.youtube.com/watch?v=hj_WKgnL6MI
Evolution vs ATP Synthase - Molecular Machine - video
http://www.metacafe.com/watch/4012706/evolution_vs_atp_synthase_molecular_machine/
Electron transport and ATP synthesis during photosynthesis - Illustration
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=cooper.figgrp.1672
Evolutionary biology: Out of thin air John F. Allen & William Martin:
The measure of the problem is here: “Oxygenetic photosynthesis involves about 100 proteins that are highly ordered within the photosynthetic membranes of the cell." http://www.nature.com/nature/journal/v445/n7128/full/445610a.html
Estimating the prevalence of protein sequences adopting functional enzyme folds: Doug Axe:
Excerpt: Starting with a weakly functional sequence carrying this signature, clusters of ten side-chains within the fold are replaced randomly, within the boundaries of the signature, and tested for function. The prevalence of low-level function in four such experiments indicates that roughly one in 10^64 signature-consistent sequences forms a working domain. Combined with the estimated prevalence of plausible hydropathic patterns (for any fold) and of relevant folds for particular functions, this implies the overall prevalence of sequences performing a specific function by any domain-sized fold may be as low as 1 in 10^77, adding to the body of evidence that functional folds require highly extraordinary sequences. http://www.ncbi.nlm.nih.gov/pubmed/15321723
Evolution vs. Functional Proteins - Doug Axe - Video
http://www.metacafe.com/watch/4018222/evolution_vs_functional_proteins_where_did_the_information_come_from_doug_axe_stephen_meyer/
Of note: anoxygenic (without oxygen) photosynthesis is even more of a complex chemical pathway than oxygenic photosynthesis is:
"Remarkably, the biosynthetic routes needed to make the key molecular component of anoxygenic photosynthesis are more complex than the pathways that produce the corresponding component required for the oxygenic form."; Hugh Ross
also of note: Anaerobic organisms and most viruses are quickly destroyed by direct contact with oxygen.
"There is no question about photosynthesis being Irreducibly Complex. But it’s worse than that from an evolutionary perspective. There are 17 enzymes alone involved in the synthesis of chlorophyll. Are we to believe that all intermediates had selective value? Not when some of them form triplet states that have the same effect as free radicals like O2. In addition if chlorophyll evolved before antenna proteins, whose function is to bind chlorophyll, then chlorophyll would be toxic to cells. Yet the binding function explains the selective value of antenna proteins. Why would such proteins evolve prior to chlorophyll? and if they did not, how would cells survive chlorophyll until they did?" Uncommon Descent Blogger
Interestingly, while the photo-synthetic bacteria were reducing greenhouse gases and producing oxygen, and metal, and minerals, which would all be of benefit to modern man, "sulfate-reducing" bacteria were also producing their own natural resources which would be very useful to modern man. Sulfate-reducing bacteria helped prepare the earth for advanced life by detoxifying the primeval earth and oceans of poisonous levels of heavy metals while depositing them as relatively inert metal ores. Metal ores which are very useful for modern man, as well as fairly easy for man to extract today (mercury, cadmium, zinc, cobalt, arsenic, chromate, tellurium and copper to name a few). To this day, sulfate-reducing bacteria maintain an essential minimal level of these heavy metals in the ecosystem which are high enough so as to be available to the biological systems of the higher life forms that need them yet low enough so as not to be poisonous to those very same higher life forms.
Bacterial Heavy Metal Detoxification and Resistance Systems:
Excerpt: Bacterial plasmids contain genetic determinants for resistance systems for Hg2+ (and organomercurials), Cd2+, AsO2, AsO43-, CrO4 2-, TeO3 2-, Cu2+, Ag+, Co2+, Pb2+, and other metals of environmental concern.
http://www.springerlink.com/content/u1t281704577v8t3/
http://www.int-res.com/articles/meps/26/m026p203.pdf
Even this recent "evolution friendly" article readily admits the staggering level of complexity required for the "first" cell:
Was our oldest ancestor a proton-powered rock? - Oct. 2009
Excerpt: “There is no doubt that the progenitor of all life on Earth, the common ancestor, possessed DNA, RNA and proteins, a universal genetic code, ribosomes (the protein-building factories), ATP and a proton-powered enzyme for making ATP. The detailed mechanisms for reading off DNA and converting genes into proteins were also in place. In short, then, the last common ancestor of all life looks pretty much like a modern cell.”
http://www.newscientist.com/article/mg20427306.200-was-our-oldest-ancestor-a-protonpowered-rock.html
Journey Inside The Cell - DNA to mRNA to Proteins - Stephen Meyer - Signature In The Cell - video
https://www.youtube.com/watch?v=1fiJupfbSpg
Signature in the Cell - Book Review - Ken Peterson
Excerpt: the “simplest extant cell, Mycoplasma genitalium — a tiny bacterium that inhabits the human urinary tract — requires ‘only’ 482 proteins to perform its necessary functions…(562,000 bases of DNA…to assemble those proteins).” ,,, amino acids have to congregate in a definite specified sequence in order to make something that “works.” First of all they have to form a “peptide” bond and this seems to only happen about half the time in experiments. Thus, the probability of building a chain of 150 amino acids containing only peptide links is about one chance in 10 to the 45th power.
In addition, another requirement for living things is that the amino acids must be the “left-handed” version. But in “abiotic amino-acid production” the right- and left-handed versions are equally created. Thus, to have only left-handed, only peptide bonds between amino acids in a chain of 150 would be about one chance in 10 to the 90th. Moreover, in order to create a functioning protein the “amino acids, like letters in a meaningful sentence, must link up in functionally specified sequential arrangements.” It turns out that the probability for this is about one in 10 to the 74th. Thus, the probability of one functional protein of 150 amino acids forming by random chance is (1 in) 10 to the 164th. If we assume some minimally complex cell requires 250 different proteins then the probability of this arrangement happening purely by chance is one in 10 to the 164th multiplied by itself 250 times or one in 10 to the 41,000th power.
http://www.spectrummagazine.org/reviews/book_reviews/2009/10/06/signature_cell
"No man-made program comes close to the technical brilliance of even Mycoplasmal genetic algorithms. Mycoplasmas are the simplest known organism with the smallest known genome, to date. How was its genome and other living organisms' genomes programmed?" - David L. Abel and Jack T. Trevors, “Three Subsets of Sequence Complexity and Their Relevance to Biopolymeric Information,” Theoretical Biology & Medical Modelling, Vol. 2, 11 August 2005, page 8
http://www.biomedcentral.com/content/pdf/1742-4682-2-29.pdf
First-Ever Blueprint of 'Minimal Cell' Is More Complex Than Expected - Nov. 2009
Excerpt: A network of research groups,, approached the bacterium at three different levels. One team of scientists described M. pneumoniae's transcriptome, identifying all the RNA molecules, or transcripts, produced from its DNA, under various environmental conditions. Another defined all the metabolic reactions that occurred in it, collectively known as its metabolome, under the same conditions. A third team identified every multi-protein complex the bacterium produced, thus characterising its proteome organisation.
"At all three levels, we found M. pneumoniae was more complex than we expected,"
http://www.sciencedaily.com/releases/2009/11/091126173027.htm
Intelligent Design or Evolution? Stuart Pullen
The chemical origin of life is the most vexing problem for naturalistic theories of life's origins. Despite an intense 50 years of research, how life can arise from non-life through naturalistic processes is as much a mystery today as it was fifty years ago, if not more.
http://www.arn.org/arnproducts/php/book_show_item.php?id=106
On The Origin Of Life And God - Henry F. Schaefer, III PhD. - video
http://www.metacafe.com/watch/4018204/the_origin_of_life_and_god_henry_fritz_schaefer_phd/
By the way, there is a one million dollar "Origin-of-Life" prize being offered:
"The Origin-of-Life Prize" ® (hereafter called "the Prize") will be awarded for proposing a highly plausible mechanism for the spontaneous rise of genetic instructions in nature sufficient to give rise to life.
http://www.us.net/life/index.htm
Intelligent Design - The Anthropic Hypothesis
http://lettherebelight-77.blogspot.com/