Defending the Christian Worlview, Creationism, and Intelligent Design
Would you like to react to this message? Create an account in a few clicks or log in to continue.
Defending the Christian Worlview, Creationism, and Intelligent Design

This is my personal virtual library, where i collect information, which leads in my view to the Christian faith, creationism, and Intelligent Design as the best explanation of the origin of the physical Universe, life, and biodiversity

You are not connected. Please login or register

Defending the Christian Worlview, Creationism, and Intelligent Design » Intelligent Design » Why is the Sky blue ?

Why is the Sky blue ?

Go down  Message [Page 1 of 1]

1Why is the Sky blue ?  Empty Why is the Sky blue ? Sun Mar 23, 2014 9:04 pm


why is the sky blue ?

The answer is a little more complicated than you may think. It may have a lot to do with rocks, phosphorous and ancient algae, according to a new study.

For the first two billion years of Earth’s history or so, the sky was probably orange. We’re not sure whether that’s really true — no one’s been able to hop in a time machine and go back and check — but based on what we know about the chemistry of that time period, there’s a good chance the atmosphere’s primary component was methane (CH4), which would’ve cast a strange pall over our young planet.
WATCH VIDEO: Why is the sky blue? It sounds so basic, but do you know the answer? Kasey-Dee Gardner finds out.

These days, the atmosphere is mostly nitrogen and oxygen. Sunlight is made up of all the colors of the rainbow (as well as many wavelengths we can’t see); as it jostles through air molecules, blue light is most efficiently reflected, so our eyes end up experiencing a beautiful azure shade.
SLIDE SHOW: See photos of gorgeous sunsets and other sky wonders!

How did it change from orange to blue? About 2.5 billion years ago, the newest fad in organisms was photosynthesis — the ability to to turn sunlight, carbon dioxide (CO2) and water into sugar. Armed with the latest evolutionary accoutrement, ancient algae had it made — an everlasting food source and all the world’s oceans to expand into.

Only one problem. Algae need more than sugar for a balanced diet; they need nutrients like phosphorous, too. Dominic Papineau of the Carnegie Institution for Science thinks they got it in a burst of erosion from 2.5 to 2 billion years ago, a period of time when Earth’s atmosphere got its first big injection of oxygen. 10 Ways Beijing (and Other Cities) Can Keep Its Skies Blue and Roads Gridlock-Free
WATCH VIDEO: If you’d rather drive towards a hurricane-ravaged coastline — instead of away from one — then you, too, might have a calling as an Extreme Storm Surveyor.

The way Papineau sees it, the “Great Oxidation Event” lines up nicely with a rise in continental rifting and widespread glacial deposits. So it’s possible that enhanced tectonic activity and a change in climate eroded large amounts of phosphorous-rich rocks, which washed into the ocean over a period of several hundred million years.

With plenty of phosphorous to munch, algae were off to the races, churning out oxygen that flooded the atmosphere, Papineau

reasons in this press release. It’s not unlike humans’ prodigious use of fertilizers today, which can cause large algal blooms in rivers, lakes and even the Gulf of Mexico:
“Today, this is happening very fast and is caused by us,” he says, “and the glut of organic matter actually consumes oxygen. But during the Proterozoic this occurred over timescales of hundreds of millions of years and progressively led to an oxygenated atmosphere.”

The first episode only got us about 10 percent of the way toward present-day oxygen levels, though. It wasn’t until about a billion years ago that the atmosphere got another hit of O2, bringing us to the air we breathe today. This period, from 1 billion to 540 million years ago, is known as the “Cambrian explosion” after the riot of diverse life found in the fossil record.
Planet Green: Why Is the Ocean Blue?

In some ways, it’s one of the most important moments in the history of life on Earth. Organisms went on a rampage of evolutionary innovation, giving rise to complex life forms the likes of which the planet had never seen before, and Papineau thinks phosphorous was behind it:
“This increased oxygen no doubt had major consequences for the evolution of complex life. It can be expected that modern changes will also strongly perturb evolution,” (Papineau) adds. “However, new lineages of complex life-forms take millions to tens of millions of years to adapt. In the meantime, we may be facing significant extinctions from the quick changes we are causing.”

Back to top  Message [Page 1 of 1]

Permissions in this forum:
You cannot reply to topics in this forum