Defending the Christian Worldview, Creationism, and Intelligent Design
Would you like to react to this message? Create an account in a few clicks or log in to continue.
Defending the Christian Worldview, Creationism, and Intelligent Design

This is my personal virtual library, where i collect information, which leads in my view to the Christian faith, creationism, and Intelligent Design as the best explanation of the origin of the physical Universe, life, and biodiversity


You are not connected. Please login or register

Defending the Christian Worldview, Creationism, and Intelligent Design » Astronomy & Cosmology and God » Laws of Physics, fine-tuned for a life-permitting universe

Laws of Physics, fine-tuned for a life-permitting universe

Go down  Message [Page 1 of 1]

Otangelo


Admin

Laws of Physics, fine-tuned for a life-permitting universe 

https://reasonandscience.catsboard.com/t1336-laws-of-physics-fine-tuned-for-a-life-permitting-universe

The laws of physics aren't a "free lunch", that just exists, and that does not require an explanation. If the fundamental constants had substantially different values, it would be impossible to form even simple structures like atoms, molecules, planets, or stars. Paul Davies,The Goldilocks enigma:  For a start, there is no logical reason why nature should have a mathematical subtext in the first place.  You would never guess by looking at the physical world that beneath the surface hubbub of natural phenomena lies an abstract order, an order that cannot be seen or heard or felt, but only deduced. 
The existence of laws of nature is the starting point of science itself. But right at the outset we encounter an obvious and profound enigma: Where do the laws of nature come from?  If they aren’t the product of divine providence, how can they be explained? English astronomer James Jeans: “The universe appears to have been designed by a pure mathematician.”
Sir Fred Hoyle:   I do not believe that any scientist who examines the evidence would fail to draw the inference that the laws of nuclear physics have been deliberately designed with regard to the consequences they produce inside stars. If this is so, then my apparently random quirks have become part of a deep-laid scheme. If not then we are back again at a monstrous sequence of accidents.
How could the whole world of nature have ever precisely obeyed laws that did not yet exist? But where did they exist? A law is simply an idea, and an idea exists only in someone's mind. Since there is no mind in nature, nature itself has no intelligence of the laws which govern it. Modern science takes it for granted that the universe has always danced to rhythms it cannot hear, but still assigns power of motion to the dancers themselves. How is that possible? The power to make things happen in obedience to universal laws cannot reside in anything ignorant of these laws. Would it be more reasonable to suppose that this power resides in the laws themselves? Of course not. Ideas have no intrinsic power. They affect events only as they direct the will of a thinking person. Only a thinking person has the power to make things happen. Since natural events were lawful before man ever conceived of natural laws, the thinking person responsible for the orderly operation of the universe must be a higher Being, a Being we know as God. 

Roger Penrose 
The Second Law of thermodynamics is one of the most fundamental principles of physics
https://accelconf.web.cern.ch/e06/papers/thespa01.pdf

Ethan Siegel What Is The Fine Structure Constant And Why Does It Matter? May 25, 2019,
Why is our Universe the way it is, and not some other way? There are only three things that make it so: the laws of nature themselves, the fundamental constants governing reality, and the initial conditions our Universe was born with. If the fundamental constants had substantially different values, it would be impossible to form even simple structures like atoms, molecules, planets, or stars. Yet, in our Universe, the constants have the explicit values they do, and that specific combination yields the life-friendly cosmos we inhabit. 
https://www.forbes.com/sites/forbes-personal-shopper/2021/08/12/artifact-uprising-early-years-child-memory-book/?sh=3576094116ca

Jason Waller Cosmological Fine-Tuning Arguments 2020, page 107
Fine-Tuning and Metaphysics 
There may also be a number of ways in which our universe is “meta-physically” fine-tuned. Let’s consider three examples: the law-like nature of our universe, the psychophysical laws, and emergent properties. The first surprising metaphysical fact about our universe is that it obeys laws. It is not difficult to coherently describe worlds that are entirely chaotic and have no laws at all. There are an infinite number of such possible worlds. In such worlds, of course, there could be no life because there would be no stability and so no development. Furthermore, we can imagine a universe in which the laws of nature change rapidly every second or so. It is hard to calculate precisely what would happen here (of course), but without stable laws of nature it is hard to imagine how intelligent organic life could evolve. If, for example, opposite electrical charges began to repulse one another from time to time, then atoms would be totally unstable. Similarly, if the effect that matter had on the geometry of space-time changed hourly, then we could plausibly infer that such a world would lack the required consistency for life to flourish. Is it possible to quantify this metaphysical fine-tuning more precisely? Perhaps. Consider the following possibility. ( If we hold to the claim that the universe is 13,7bi years old ) - there have been approximately 10^18 seconds since the Big Bang. So far as we can tell the laws of nature have not changed in all of that time. Nevertheless, it is easy to come up with a huge number of alternative histories where the laws of nature changed radically at time t1 , or time t2 , etc. If we confine ourselves only to a single change and only allow one change per second, then we can easily develop 10^18 alternative metaphysical histories of the universe. Once we add other changes, we get an exponentially larger number. If (as seems very likely) most of those universes are not life-permitting, then we could have a significant case of metaphysical fine-tuning.

The existence of organic intelligent life relies on numerous emergent properties—liquidity, chemical properties, solidity, elasticity, etc. Since all of these properties are required for the emergence of organic life, if the supervenience laws had been different, then the same micro-level structures would have yielded different macro-level properties. That may very well have meant that no life could be posssible. If atoms packed tightly together did not result in solidity, then this would likely limit the amount of biological complexity that is possible. Michael Denton makes a similar argument concerning the importance of the emergent properties of water to the possibility of life. While these metaphysical examples are much less certain than the scientific ones, they are suggestive and hint at the many different ways in which our universe appears to have been fine-tuned for life.
https://3lib.net/book/5240658/bd3f0d



Steven Weinberg: The laws of nature are the principles that govern everything. The aim of physics, or at least one branch of physics, is after all to find the principles that explain the principles that explain everything we see in nature, to find the ultimate rational basis of the universe. And that gets fairly close in some respects to what people have associated with the word "God.  The outside world is governed by mathematical laws.  We can look forward to a theory that encompasses all existing theories, which unifies all the forces, all the particles, and at least in principle is capable of serving as the basis of an explanation of everything. We can look forward to that, but then the question will always arise, "Well, what explains that? Where does that come from?" And then we -- looking at -- standing at that brink of that abyss we have to say we don't know, and how could we ever know, and how can we ever get comfortable with this sort of a world ruled by laws which just are what they are without any further explanation? And coming to that point which I think we will come to, some would say, well, then the explanation is God made it so. If by God you mean a personality who is concerned about human beings, who did all this out of love for human beings, who watches us and who intervenes, then I would have to say in the first place how do you know, what makes you think so?
https://www.pbs.org/faithandreason/transcript/wein-frame.html
My response: The mere fact that the universe is governed by mathematical laws, and that the fundamental physical constants are set just right to permit life, is evidence enough.

ROBIN COLLINS The Teleological Argument: An Exploration of the Fine-Tuning of the Universe 2009
The first major type of fine-tuning is that of the laws of nature. The laws and principles of nature themselves have just the right form to allow for the existence of embodied moral agents. To illustrate this, we shall consider the following five laws or principles (or causal powers) and show that if any one of them did not exist, self-reproducing, highly complex material systems could not exist: 
(1) a universal attractive force, such as gravity; 
(2) a force relevantly similar to that of the strong nuclear force, which binds protons and neutrons together in the nucleus; 
(3) a force relevantly similar to that of the electromagnetic force; 
(4) Bohr’s Quantization Rule or something similar; 
(5) the Pauli Exclusion Principle. If any one of these laws or principles did not exist (and were not replaced by a law or principle that served the same or similar role), complex self-reproducing material systems could not evolve.

First, consider gravity. Gravity is a long-range attractive force between all material objects, whose strength increases in proportion to the masses of the objects and falls off with the inverse square of the distance between them. Consider what would happen if there were no universal, long-range attractive force between material objects, but all the other fundamental laws remained (as much as possible) the same. If no such force existed, then there would be no stars, since the force of gravity is what holds the matter in stars together against the outward forces caused by the high internal temperatures inside the stars. This means that there would be no long-term energy sources to sustain the evolution (or even existence) of highly complex life. Moreover, there probably would be no planets, since there would be nothing to bring material particles together, and even if there were planets (say because planet-sized objects always existed in the universe and were held together by cohesion), any beings of significant size could not move around without floating off the planet with no way of returning. This means that physical life could not exist. For all these reasons, a universal attractive force such as gravity is required for life.

Question: Why is gravity only attractive, and not repulsive? It could be both, and there would be no life in the universe. 

Second, consider the strong nuclear force. The strong nuclear force is the force that binds nucleons (i.e. protons and neutrons) together in the nucleus of an atom. Without it, the nucleons would not stay together. It is actually a result of a deeper force, the “gluonic force,” between the quark constituents of the neutrons and protons, a force described by the theory of quantum chromodynamics. It must be strong enough to overcome the repulsive electromagnetic force between the protons and the quantum zero-point energy of the nucleons. Because of this, it must be considerably stronger than the electromagnetic force; otherwise, the nucleus would come apart. Further, to keep atoms of limited size, it must be very short range – which means its strength must fall off much, much more rapidly than the inverse square law characteristic of the electromagnetic force and gravity. Since it is a purely attractive force (except at extraordinarily small distances), if it fell off by an inverse square law like gravity or electromagnetism, it would act just like gravity and pull all the protons and neutrons in the entire universe together. In fact, given its current strength, around 10^40 stronger than the force of gravity between the nucleons in a nucleus, the universe would most likely consist of a giant black hole. Thus, to have atoms with an atomic number greater than that of hydrogen, there must be a force that plays the same role as the strong nuclear force – that is, one that is much stronger than the electromagnetic force but only acts over a very short range. It should be clear that embodied moral agents could not be formed from mere hydrogen, contrary to what one might see on science fiction shows such as Star Trek. One cannot obtain enough self-reproducing, stable complexity. Furthermore, in a universe in which no other atoms but hydrogen could exist, stars could not be powered by nuclear fusion, but only by gravitational collapse, thereby drastically decreasing the time for, and hence the probability of, the evolution of embodied life.

Questions: Why is the strong force not both, repulsive and attractive? It could be both, and we would not be here to talk about it.

Third, consider electromagnetism. Without electromagnetism, there would be no atoms, since there would be nothing to hold the electrons in orbit. Further, there would be no means of transmission of energy from stars for the existence of life on planets. It is doubtful whether enough stable complexity could arise in such a universe for even the simplest forms of life to exist.

Fourth, consider Bohr’s rule of quantization, first proposed in 1913, which requires that electrons occupy only fixed orbitals (energy levels) in atoms. It was only with the development of quantum mechanics in the 1920s and 1930s that Bohr’s proposal was given an adequate theoretical foundation. If we view the atom from the perspective of classical Newtonian mechanics, an electron should be able to go in any orbit around the nucleus. The reason is the same as why planets in the solar system can be any distance from the Sun – for example, the Earth could have been 150 million miles from the Sun instead of its present 93 million miles. Now the laws of electromagnetism – that is, Maxwell’s equations – require that any charged particle that is accelerating emit radiation. Consequently, because electrons orbiting the nucleus are accelerating – since their direction of motion is changing – they would emit radiation. This emission would in turn cause the electrons to lose energy, causing their orbits to decay so rapidly that atoms could not exist for more than a few moments. This was a major problem confronting Rutherford’s model of the atom – in which the atom had a nucleus with electrons around the nucleus – until Niels Bohr proposed his ad hoc rule of quantization in 1913, which required that electrons occupy fixed orbitals. Thus, without the existence of this rule of quantization – or something relevantly similar – atoms could not exist, and hence there would be no life. 

Finally, consider the Pauli Exclusion Principle, which dictates that no two fermions (spin-½ particles) can occupy the same quantum state. This arises from a deep principle in quantum mechanics which requires that the joint wave function of a system of fermions be antisymmetric. This implies that not more than two electrons can occupy the same orbital in an atom, since a single orbital consists of two possible quantum states (or more precisely, eigenstates) corresponding to the spin pointing in one direction and the spin pointing in the opposite direction. This allows for complex chemistry since without this principle, all electrons would occupy the lowest atomic orbital. Thus, without this principle, no complex life would be possible.
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.63&rep=rep1&type=pdf

Alexander Bolonkin Universe, Human Immortality and Future Human Evaluation, 2012
There is no explanation for the particular values that physical constants appear to have throughout our universe, such as Planck’s constant h or the gravitational constant G. Several conservation laws have been identified, such as the conservation of charge, momentum, angular momentum, and energy; in many cases, these conservation laws can be related to symmetries or mathematical identities.
https://3lib.net/book/2205001/d7ffa2

On the last page of his book Many Worlds in One, Alex Vilenkin says this:
“The picture of quantum tunneling from nothing raises another intriguing question. The tunneling process is governed by the same fundamental laws that describe the subsequent evolution of the universe. It follows that the laws should be “there” even prior to the universe itself. Does this mean that the laws are not mere descriptions of reality and can have an independent existence of their own? In the absence of space, time, and matter, what tablets could they be written upon? The laws are expressed in the form of mathematical equations. If the medium of mathematics is the mind, does this mean that mind should predate the universe?”
Vilenkin, Alex. Many Worlds in One: The Search for Other Universes (pp. 204-206). Farrar, Straus and Giroux.

Luke A. Barnes The Fine-Tuning of the Universe for Intelligent Life  June 11, 2012
Changing the Laws of Nature
The set of laws that permit the emergence and persistence of complexity is a very small subset of all possible laws. There is an infinite number of ways to set up laws that would result in an either trivially simple or utterly chaotic universe.

- A universe governed by Maxwell’s Laws “all the way down” (i.e. with no quantum regime at small scales) will not have stable atoms — electrons radiate their kinetic energy and spiral rapidly into the nucleus — and hence no chemistry. We don’t need to know what the parameters are to know that life in such a universe is plausibly impossible.
- If electrons were bosons, rather than fermions, then they would not obey the Pauli exclusion principle. There would be no chemistry. 
- If gravity were repulsive rather than attractive, then matter wouldn’t clump into complex structures. Remember: your density, thank gravity, is 10^30 times greater than the average density of the universe. 
- If the strong force were a long rather than short-range force, then there would be no atoms. Any structures that formed would be uniform, spherical, undifferentiated lumps, of arbitrary size and incapable of complexity. 
- If, in electromagnetism, like charges attracted and opposites repelled, then there would be no atoms. As above, we would just have undifferentiated lumps of matter. 
- The electromagnetic force allows matter to cool into galaxies, stars, and planets. Without such interactions, all matter would be like dark matter, which can only form into large, diffuse, roughly spherical haloes of matter whose only internal structure consists of smaller, diffuse, roughly spherical subhaloes.
https://arxiv.org/pdf/1112.4647.pdf

Leonard Susskind The Cosmic Landscape: String Theory and the Illusion of Intelligent Design 2006, page 100
The Laws of Physics are like the “weather of the vacuum,” except instead of the temperature, pressure, and humidity, the weather is determined by the values of fields. And just as the weather determines the kinds of droplets that can exist, the vacuum environment determines the list of elementary particles and their properties. How many controlling fields are there, and how do they affect the list of elementary particles, their masses, and coupling constants? Some of the fields we already know—the electric field, the magnetic field, and the Higgs field. The rest will be known only when we discover more about the overarching laws of nature than just the Standard Model. 
https://3lib.net/book/2472017/1d5be1

By law in physics, or physical laws of nature, what one means is that the physical forces that govern the universe remain constant - they do not change across the universe. One relevant question, Lawrence Krauss asks, is: If we change one fundamental constant, one force law, would the whole edifice tumble? 5   There HAVE to be four forces in nature, the proton requires to be 1836 times heavier than the electron, etc, otherwise, the universe would be devoid of life.

String theorists argued that they had found the Theory of Everything—that using the postulates of string theory one would be driven to a unique physical theory, with no wiggle room, that would ultimately explain everything we see at a fundamental level.

My comment: The Theory of everything is basically synonymous with a mechanism, that without external guidance or set-up, would explain how the universe got set up like a clock, operating in a continuous stable manner, and permitting the generation of the right initial condition to have a continuously expanding universe, atoms, the periodic table containing all the chemical elements, stars, planets, molecules, life, and humans with brains, being able to investigate all this. Basically, it would replace God.  

WH. McCrea: "Cosmology after Half a Century," Science, Vol. 160, June 1968, p. 1297.
"The naive view implies that the universe suddenly came into existence and found a complete system of physical laws waiting to be obeyed. Actually, it seems more natural to suppose that the physical universe and the laws of physics are interdependent." —
https://sci-hub.ren/10.1126/science.160.3834.1295

My comment:  The laws of physics are interdependent with time, space, and matter. They exist to govern matter within our linear dimension of time and space. Because the laws of physics are interdependent with all forms of matter, they must therefore have existed simultaneously with matter in our universe. Time, space, and matter we’re created at the very moment of “the beginning”, and as such, so did the laws of physics.

Paul Davies Superforce, page 243
All the evidence so far indicates that many complex structures depend most delicately on the existing form of these laws. It is tempting to believe, therefore, that a complex universe will emerge only if the laws of physics are very close to what they are....The laws, which enable the universe to come into being spontaneously, seem themselves to be the product of exceedingly ingenious design. If physics is the product of design, the universe must have a purpose, and the evidence of modern physics suggests strongly to me that the purpose includes us.
https://3lib.net/book/14357613/6ebdf9

Paul Davies,The Goldilocks enigma: why is the universe just right for life? 2006
Until recently, “the Goldilocks factor” was almost completely ignored by scientists. Now, that is changing fast. Science is, at last, coming to grips with the enigma of why, at last, verse is so uncannily fit for life. The explanation entails understanding how the universe began and evolved into its present form and knowing what matter is made of and how it is shaped and structured by the different forces of nature. Above all, it requires us to probe the very nature of physical laws. The existence of laws of nature is the starting point of science itself. But right at the outset we encounter an obvious and profound enigma: Where do the laws of nature come from? As I have remarked, Galileo, Newton, and their contemporaries regarded the laws as thoughts in the mind of God, and their elegant mathematical form as a manifestation of God’s rational plan for the universe. Few scientists today would describe the laws of nature using such quaint language. Yet the questions remain of what these laws are and why they have the form that they do. If they aren’t the product of divine providence, how can they be explained?
English astronomer James Jeans: “The universe appears to have been designed by a pure mathematician.”
https://3lib.net/book/5903498/82353b

Paul Davies Yes, the universe looks like a fix. But that doesn't mean that a god fixed it 26 Jun 2007
The idea of absolute, universal, perfect, immutable laws comes straight out of monotheism, which was the dominant influence in Europe at the time science as we know it was being formulated by Isaac Newton and his contemporaries. Just as classical Christianity presents God as upholding the natural order from beyond the universe, so physicists envisage their laws as inhabiting an abstract transcendent realm of perfect mathematical relationships. Furthermore, Christians believe the world depends utterly on God for its existence, while the converse is not the case. Correspondingly, physicists declare that the universe is governed by eternal laws, but the laws remain impervious to events in the universe. I propose instead that the laws are more like computer software: programs being run on the great cosmic computer. They emerge with the universe at the big bang and are inherent in it, not stamped on it from without like a maker's mark. If a law is a truly exact mathematical relationship, it requires infinite information to specify it. In my opinion, however, no law can apply to a level of precision finer than all the information in the universe can express. Infinitely precise laws are an extreme idealisation with no shred of real world justification. In the first split second of cosmic existence, the laws must therefore have been seriously fuzzy. Then, as the information content of the universe climbed, the laws focused and homed in on the life-encouraging form we observe today. But the flaws in the laws left enough wiggle room for the universe to engineer its own bio-friendliness. Thus, three centuries after Newton, symmetry is restored: the laws explain the universe even as the universe explains the laws. If there is an ultimate meaning to existence, as I believe is the case, the answer is to be found within nature, not beyond it. The universe might indeed be a fix, but if so, it has fixed itself.
https://www.theguardian.com/commentisfree/2007/jun/26/spaceexploration.comment

My comment:  Thats similar to say that the universe created itself. Thats simply irrational philosophical gobbledygook. The laws of physics had to be imprinted from an outside source right at the beginning. Any fiddling around until finding the right parameters to have the right conditions for an expanding universe would have taken trillions and trillions of attempts. If not God, nature must have had an urgent need to become self-existent. Why or how would that have been so?

Sir Fred Hoyle:  [Fred Hoyle, in Religion and the Scientists, 1959; quoted in Barrow and Tipler, p. 22]
I do not believe that any scientist who examines the evidence would fail to draw the inference that the laws of nuclear physics have been deliberately designed with regard to the consequences they produce inside stars. If this is so, then my apparently random quirks have become part of a deep-laid scheme. If not then we are back again at a monstrous sequence of accidents.

Finally, it would be the ultimate anthropic coincidence if beauty and complexity in the mathematical principles of the fundamental theory of physics produced all the necessary lowenergy conditions for intelligent life. This point has been made by a number of authors, e.g. Carr & Rees (1979) and Aguirre (2005). Here is
Wilczek (2006b): “It is logically possible that parameters determined uniquely by abstract theoretical principles just happen to exhibit all the apparent fine-tunings required to produce, by a lucky coincidence, a universe containing complex structures. But that, I think, really strains credulity.”
https://arxiv.org/pdf/1112.4647.pdf

Luke A. Barnes: A Reasonable Little Question: A Formulation of the Fine-Tuning Argument No. 42, 2019–2020 1
The standard model of particle physics and the standard model of cosmology (together, the standard models) contain 31 fundamental constants (which, for our purposes here, will include what are better known as initial conditions or boundary conditions) listed in Tegmark, Aguirre, Rees, and Wilczek (2006):
2 constants for the Higgs field: the vacuum expectation value (vev) and the Higgs mass,
12 fundamental particle masses, relative to the Higgs vev (i.e., the Yukawa couplings): 6 quarks (u,d,s,c,t,b) and 6 leptons (e,μ, τ, νe, νμ, ντ)
3 force coupling constants for the electromagnetic (α), weak (αw) and strong (αs) forces,
4 parameters that determine the Cabibbo-Kobayashi-Maskawa matrix, which describes the mixing of quark flavours by the weak force,
4 parameters of the Pontecorvo-Maki-Nakagawa-Sakata matrix, which describe neutrino mixing,
1 effective cosmological constant (Λ),
3 baryon (i.e., ordinary matter) / dark matter / neutrino mass per photon ratios,
1 scalar fluctuation amplitude (Q),
1 dimensionless spatial curvature (κ≲10−60).
This does not include 4 constants that are used to set a system of units of mass, time, distance and temperature: Newton’s gravitational constant (G), the speed of light c, Planck’s constant ℏ, and Boltzmann’s constant kB. There are 25 constants from particle physics, and 6 from cosmology.
About ten to twelve out of these above-mentioned constants, thirty-one total, exhibit significant fine-tuning.
https://quod.lib.umich.edu/e/ergo/12405314.0006.042/--reasonable-little-question-a-formulation-of-the-fine-tuning?rgn=main;view=fulltext

Max Tegmark et al.: Dimensionless constants, cosmology, and other dark matters 2006
Laws of Physics, fine-tuned for a life-permitting universe Input_10

The origin of the dimensionless numbers
So why do we observe these 31 parameters to have the particular values listed in Table I? Interest in that question has grown with the gradual realization that some of these parameters appear fine-tuned for life, in the sense that small relative changes to their values would result in dramatic qualitative changes that could preclude intelligent life, and hence the very possibility of reflective observation. There are four common responses to this realization:

(1) Fluke—Any apparent fine-tuning is a fluke and is best ignored
(2) Multiverse—These parameters vary across an ensemble of physically realized and (for all practical purposes) parallel universes, and we find ourselves in one where life is possible.
(3) Design—Our universe is somehow created or simulated with parameters chosen to allow life.
(4) Fecundity—There is no fine-tuning because intelligent life of some form will emerge under extremely varied circumstances.

Options 1, 2, and 4 tend to be preferred by physicists, with recent developments in inflation and high-energy theory giving new popularity to option 2.
https://sci-hub.ren/10.1103/physrevd.73.023505

My comment:  This is an interesting confession. Pointing to option 2, a multiverse, is based simply on personal preference, but not on evidence.

Michio Kaku on The God Equation | Closer To Truth Chats 
There are four forces that govern the entire universe we find no exceptions to gravity which holds us onto the floor keeps the sun from exploding we have the electromagnetic force that lights up our cities
then we have the two nuclear forces the weak and the strong forces and we want a theory of all four forces remember that all of biology can be explained by chemistry all of chemistry can be explained by physics all of physics can be explained by two great theories relativity the theory of gravity and the quantum theory which summarizes the electromagnetic force and the two nuclear forces but to bring them together that would give us a theory of
everything all known physical phenomenon can be summarized by an equation perhaps no more than one inch long that will allow us to quote read the mind of god and these are the words of albert einstein who spent the last 30 years of his life chasing after this theory of everything the god equation. String theory  is the only theory that can unify all four of the fundamental forces including gravitational corrections
https://www.youtube.com/watch?v=B9N2S6Chz44

Stephen C. Meyer: The return of the God hypothesis, page 189
Consider that several key fine-tuning parameters—in particular, the values of the constants of the fundamental laws of physics— are intrinsic to the structure of those laws. In other words, the precise “dial settings” of the different constants of physics represent specific features of the laws of physics themselves—just how strong gravitational attraction or electromagnetic attraction will be, for example. These specific and contingent values cannot be explained by the laws of physics because they are part of the logical structure of those laws. Scientists who say otherwise are just saying that the laws of physics explain themselves. But that is reasoning in a circle.

pg.569: In addition to the values of constants within the laws of physics, the fundamental laws themselves have specific mathematical and logical structures that could have been otherwise—that is, the laws themselves have contingent rather than logically necessary features. Yet the existence of life in the universe depends on the fundamental laws of nature having the precise mathematical structures that they do. For example, both Newton’s universal law of gravitation and Coulomb’s law of electrostatic attraction describe forces that diminish with the square of the distance. Nevertheless, without violating any logical principle or more fundamental law of physics, these forces could have diminished with the cube (or higher exponent) of the distance. That would have made the forces they describe too weak to allow for the possibility of life in the universe. Conversely, these forces might just as well have diminished in a strictly linear way. That would have made them too strong to allow for life in the universe. Moreover, life depends upon the existence of various different kinds of forces—which we describe with different kinds of laws— acting in concert. For example, life in the universe requires: 

(1) a long-range attractive force (such as gravity) that can cause galaxies, stars, and planetary systems to congeal from chemical elements in order to provide stable platforms for life; 
(2) a force such as the electromagnetic force to make possible chemical reactions and energy transmission through a vacuum; 
(3) a force such as the strong nuclear force operating at short distances to bind the nuclei of atoms together and overcome repulsive electrostatic forces; 
(4) the quantization of energy to make possible the formation of stable atoms and thus life; 
(5) the operation of a principle in the physical world such as the Pauli exclusion principle that (a) enables complex material structures to form and yet (b) limits the atomic weight of elements (by limiting the number of neutrons in the lowest nuclear shell). Thus, the forces at work in the universe itself (and the mathematical laws of physics describing them) display a fine-tuning that requires explanation. Yet, clearly, no physical explanation of this structure is possible, because it is precisely physics (and its most fundamental laws) that manifests this structure and requires explanation. Indeed, clearly physics does not explain itself. See Gordon, “Divine Action and the World of Science,” esp. 258–59; Collins, “The Fine-Tuning Evidence Is Convincing,” esp. 36–38.
https://3lib.net/book/15644088/9c418b

Paul Davies: The Goldilocks Enigma: Why Is the Universe Just Right for Life? 2008
The universe obeys mathematical laws; they are like a hidden subtext in nature. Science reveals that there is a coherent scheme of things, but scientists do not necessarily interpret that as evidence for meaning or purpose in the universe.

My comment: The only rational explanation is however that God created this coherent scheme of things since there is no other alternative explanation. That's why atheists rather than admit that, prefer to argue of " not knowing " of its cause

This cosmic order is underpinned by definite mathematical laws that interweave each other to form a subtle and harmonious unity. The laws are possessed of an elegant simplicity, and have often commended themselves to scientists on grounds of beauty alone. Yet these same simple laws permit matter and energy to self-organize into an enormous variety of complex states. If the universe is a manifestation of rational order, then we might be able to deduce the nature of the world from "pure thought" alone, without the need for observation or experiment. On the other hand, that same logical structure contains within itself its own paradoxical limitations that ensure we can never grasp the totality of existence from deduction alone.

Why should nature be governed by laws? Why should those laws be expressible in terms of mathematics?

The physical universe and the laws of physics are interdependent and irreducible. There would not be one without the other. Origins make only sense in face of Intelligent Design.

"The naive view implies that the universe suddenly came into existence and found a complete system of physical laws waiting to be obeyed. Actually, it seems more natural to suppose that the physical universe and the laws of physics are interdependent." —*WH. McCrea, "Cosmology after Half a Century," Science, Vol. 160, June 1968, p. 1297.

Our very ability to establish the laws of nature depends on their stability.(In fact, the idea of a law of nature implies stability.) Likewise, the laws of nature must remain constant long enough to provide the kind of stability life requires through the building of nested layers of complexity. The properties of the most fundamental units of complexity we know of, quarks, must remain constant in order for them to form larger units, protons and neutrons, which then go into building even larger units, atoms, and so on, all the way to stars, planets, and in some sense, people. The lower levels of complexity provide the structure and carry the information of life. There is still a great deal of mystery about how the various levels relate, but clearly, at each level, structures must remain stable over vast stretches of space and time.

And our universe does not merely contain complex structures; it also contains elaborately nested layers of higher and higher complexity. Consider complex carbon atoms, within still more complex sugars and nucleotides, within more complex DNA molecules, within complex nuclei, within complex neurons, within the complex human brain, all of which are integrated in a human body. Such “complexification” would be impossible in both a totally chaotic, unstable universe and an utterly simple, homogeneous universe of, say, hydrogen atoms or quarks.

Described by man, Prescribed by God. There is no scientific reason why there should be any laws at all. It would be perfectly logical for there to be chaos instead of order. Therefore the FACT of order itself suggests that somewhere at the bottom of all this there is a Mind at work. This Mind, which is uncaused, can be called 'God.' If someone asked me what's your definition of 'God', I would say 'That which is Uncaused and the source of all that is Caused.'
https://3lib.net/book/5903498/82353b

Stanley Edgar Rickard Evidence of Design in Natural Law 2021
One remarkable feature of the natural world is that all of its phenomena obey relatively simple laws. The scientific enterprise exists because man has discovered that wherever he probes nature, he finds laws shaping its operation.
If all natural events have always been lawful, we must presume that the laws came first. How could it be otherwise? How could the whole world of nature have ever precisely obeyed laws that did not yet exist? But where did they exist? A law is simply an idea, and an idea exists only in someone's mind. Since there is no mind in nature, nature itself has no intelligence of the laws which govern it. Modern science takes it for granted that the universe has always danced to rhythms it cannot hear, but still assigns power of motion to the dancers themselves. How is that possible? The power to make things happen in obedience to universal laws cannot reside in anything ignorant of these laws. Would it be more reasonable to suppose that this power resides in the laws themselves? Of course not. Ideas have no intrinsic power. They affect events only as they direct the will of a thinking person. Only a thinking person has the power to make things happen. Since natural events were lawful before man ever conceived of natural laws, the thinking person responsible for the orderly operation of the universe must be a higher Being, a Being we know as God. Our very ability to establish the laws of nature depends on their stability.(In fact, the idea of a law of nature implies stability.) Likewise, the laws of nature must remain constant long enough to provide the kind of stability life requires through the building of nested layers of complexity. The properties of the most fundamental units of complexity we know of, quarks, must remain constant in order for them to form larger units, protons and neutrons, which then go into building even larger units, atoms, and so on, all the way to stars, planets, and in some sense, people. The lower levels of complexity provide the structure and carry the information of life. There is still a great deal of mystery about how the various levels relate, but clearly, at each level, structures must remain stable over vast stretches of space and time. And our universe does not merely contain complex structures; it also contains elaborately nested layers of higher and higher complexity. Consider complex carbon atoms, within still more complex sugars and nucleotides, within more complex DNA molecules, within complex nuclei, within complex neurons, within the complex human brain, all of which are integrated in a human body. Such “complexification” would be impossible in both a totally chaotic, unstable universe and an utterly simple, homogeneous universe of, say, hydrogen atoms or quarks. Of course, although nature’s laws are generally stable, simple, and linear—while allowing the complexity necessary for life—they do take more complicated forms. But they usually do so only in those regions of the universe far removed from our everyday experiences: general relativistic effects in high-gravity environments, the strong nuclear force inside the atomic nucleus, quantum mechanical interactions among electrons in atoms. And even in these far-flung regions, nature still guides us toward discovery. Even within the more complicated realm of quantum mechanics, for instance, we can describe many interactions with the relatively simple Schrödinger Equation. Eugene Wigner famously spoke of the “unreasonable effectiveness of mathematics in natural science”—unreasonable only if one assumes, we might add, that the universe is not underwritten by reason. Wigner was impressed by the simplicity of the mathematics that describes the workings of the universe and our relative ease in discovering them. Philosopher Mark Steiner, in The Applicability of Mathematics as a Philosophical Problem, has updated Wigner’s musings with detailed examples of the deep connections and uncanny predictive power of pure mathematics as applied to the laws of nature
http://www.themoorings.org/apologetics/theisticarg/teleoarg/teleo2.html

Described by man, Prescribed by God. There is no scientific reason why there should be any laws at all. It would be perfectly logical for there to be chaos instead of order. Therefore the FACT of order itself suggests that somewhere at the bottom of all this there is a Mind at work. This Mind, which is uncaused, can be called 'God.' If someone asked me what's your definition of 'God', I would say 'That which is Uncaused and the source of all that is Caused.' 3

John Marsh Did Einstein Believe in God? 2011
The following quotations from Einstein are all in Jammer’s book:
“Every scientist becomes convinced that the laws of nature manifest the existence of a spirit vastly superior to that of men.”
“Everyone who is seriously involved in the pursuit of science becomes convinced that a spirit is manifest in the laws of the universe – a spirit vastly superior to that of man.”
“The divine reveals itself in the physical world.”
“My God created laws… His universe is not ruled by wishful thinking but by immutable laws.”
“I want to know how God created this world. I want to know his thoughts.”
“What I am really interested in knowing is whether God could have created the world in a different way.”
“This firm belief in a superior mind that reveals itself in the world of experience, represents my conception of God.”
“My religiosity consists of a humble admiration of the infinitely superior spirit, …That superior reasoning power forms my idea of God.”
https://www.bethinking.org/god/did-einstein-believe-in-god

Where do the laws of physics come from? 
(Guth) pauses: "We are a long way from being able to answer that one." Yes, that would be a very big gap in scientific knowledge! 

   Newton’s Three Laws of Motion.
   Law of Gravity.
   Conservation of Mass-Energy.
   Conservation of Momentum.
   Laws of Thermodynamics.
   Electrostatic Laws.
   Invariance of the Speed of Light.
   Modern Physics & Physical Laws.
http://yecheadquarters.org/?p=1172

Don Patton: Origin and Evolution of the Universe Chapter 1 THE ORIGIN OF MATTER Part 1
Applying the scientific method:
When all conclusions fit and point into one direction only, what is science supposed to do? According to the scientific method you are supposed to follow the evidence regardless of where it leads, not ignore it because it leads to where you don;t want to go. But science refusal to follow the conclusions of the only things that make sense here is proof that science is not really about finding truth where ever it may lead, but making everything that exists or is discovered conform to what they have already accepted as truth.

Proof? Evolutionists have already exalted their idea of their theory as being a true proven facts with mountains of empirical evidence. They even went as far as to exalt this theory of theirs to being a Scientific theory. The problem here is that there is really no criteria that the theory had to meet to graduate to this level. Nothing. They cannot give us a 1 ,2 ,3 criteria on what the theory had to do to reach this status or the supposed evidence that took it over the top, and how it would maintain this status. How does one know that evolution still meets the criteria of being a scientific theory when evidence for and against are found all the time? And evidence gets proven wrong or found to be fraud but some how the theory of evolution holds to a criteria that is not even clear or written?

Is evolution the hero of the atheist movement?
This is what happens when a person becomes a hero unto the people. They exalt him to a status that he may not be worthy of, and make positive claims about him that are not even true just so they can look up to him as their hero. And they will protect their hero and anyone whom disagrees becomes their enemy. This is what has happened to the theory of evolution. It has become the atheist hero in the plot to justify their disbelief in God. And because the idea is their hero it will be treated as such and becomes something the atheist can look up to whether it meets the criteria or not. And it is protected against all whom would dare to disagree, and those whom disagree become the enemy for that very reason. Why do you think atheists who believe in evolution hate all creationists when they have never met them? The hero complex of evolution requires them to do just that.
http://evolutionfacts.com/Ev-V1/1evlch01a.htm

WALTER BRADLEY Is There Scientific Evidence for the Existence of God? JULY 9, 1995
For life to exist, we need an orderly (and by implication, intelligible) universe. Order at many different levels is required. For instance, to have planets that circle their stars, we need Newtonian mechanics operating in a three-dimensional universe. For there to be multiple stable elements of the periodic table to provide a sufficient variety of atomic "building blocks" for life, we need atomic structure to be constrained by the laws of quantum mechanics. We further need the orderliness in chemical reactions that is the consequence of Boltzmann's equation for the second law of thermodynamics. And for an energy source like the sun to transfer its life-giving energy to a habitat like Earth, we require the laws of electromagnetic radiation that Maxwell described.

Our universe is indeed orderly, and in precisely the way necessary for it to serve as a suitable habitat for life. The wonderful internal ordering of the cosmos is matched only by its extraordinary economy. Each one of the fundamental laws of nature is essential to life itself. A universe lacking any of the laws  would almost certainly be a universe without life.

Yet even the splendid orderliness of the cosmos, expressible in the mathematical forms, is only a small first step in creating a universe with a suitable place for habitation by complex, conscious life. 

Johannes Kepler, Defundamentis Astrologiae Certioribus, Thesis XX (1601)
"The chief aim of all investigations of the external world should be to discover the rational order and harmony which has been imposed on it by God and which He revealed to us in the language of mathematics."

The particulars of the mathematical forms themselves are also critical. Consider the problem of stability at the atomic and cosmic levels. Both Hamilton's equations for non-relativistic, Newtonian mechanics and Einstein's theory of general relativity are unstable for a sun with planets unless the gravitational potential energy is correctly proportional to, a requirement that is only met for a universe with three spatial dimensions. For Schrödinger's equations for quantum mechanics to give stable, bound energy levels for atomic hydrogen (and by implication, for all atoms), the universe must have no more than three spatial dimensions. Maxwell's equations for electromagnetic energy transmission also require that the universe be no more than three-dimensional. Richard Courant illustrates this felicitous meeting of natural laws with the example of sound and light: "[O]ur actual physical world, in which acoustic or electromagnetic signals are the basis of communication, seems to be singled out among the mathematically conceivable models by intrinsic simplicity and harmony. To summarize, for life to exist, we need an orderly (and by implication, intelligible) universe. Order at many different levels is required. For instance, to have planets that circle their stars, we need Newtonian mechanics operating in a three-dimensional universe. For there to be multiple stable elements of the periodic table to provide a sufficient variety of atomic "building blocks" for life, we need atomic structure to be constrained by the laws of quantum mechanics. We further need the orderliness in chemical reactions that is the consequence of Boltzmann's equation for the second law of thermodynamics. And for an energy source like the sun to transfer its life-giving energy to a habitat like Earth, we require the laws of electromagnetic radiation that Maxwell described.

Our universe is indeed orderly, and in precisely the way necessary for it to serve as a suitable habitat for life. The wonderful internal ordering of the cosmos is matched only by its extraordinary economy. Each one of the fundamental laws of nature is essential to life itself. A universe lacking any of the laws would almost certainly be a universe without life. Many modern scientists, like the mathematicians centuries before them, have been awestruck by the evidence for intelligent design implicit in nature's mathematical harmony and the internal consistency of the laws of nature. 

Nobel laureates Eugene Wigner and Albert Einstein have respectfully evoked "mystery" or "eternal mystery" in their meditations upon the brilliant mathematical encoding of nature's deep structures. But as Kepler, Newton, Galileo, Copernicus, Davies, and Hoyle and many others have noted, the mysterious coherency of the mathematical forms underlying the cosmos is solved if we recognize these forms to be the creative intentionality of an intelligent creator who has purposefully designed our cosmos as an ideal habitat for us.

Question:   What is their origin? Can laws come about naturally? How did they come about fully balanced to create order instead of chaos?
Answer: The laws themselves defy a natural existence and science itself has not even one clue on how to explain them coming into being naturally.So when you use deductive reasoning, cancelling out all that does not fit or will not work, there is only one conclusion left that fits the bill of why the laws exist, and why they work together to make order instead of chaos.
Deny it as naturalist may, their way if thinking cannot explain away a Creator creating the laws that exist and the fact that they create order instead of chaos. That they are put together and tweaked to be in balance like a formula making everything work together to create all that we see. Always ignoring that even one notch off in how one law works with another that total and complete chaos would be the result. And that they cannot even contemplate the first step in an explanation that would fit their world views.



Laws of Physics, where did they come from?
https://www.youtube.com/watch?v=T8VYZwzLbk8&t=256s

Paul Davies - What is the Origin of the Laws of Nature?
https://www.youtube.com/watch?v=HOLjx57_7_c

Martin Rees - Where Do the Laws of Nature Come From?
https://www.youtube.com/watch?v=vmvt6nn_Kb0

Jerry Bowyer, “God In Mathematics” at Forbes
https://uncommondescent.com/intelligent-design/an-interview-on-god-and-mathematics/?fbclid=IwAR0Z5yG7IXJS786QzW57iLRzpaqhk11J9HAQRWbSpzn6uBHw_khCqGVk1xs

Laws of Physics, fine-tuned for a life-permitting universe XAfkapD

Roger Penrose The Second Law of thermodynamics is one of the most fundamental principles of physics
https://accelconf.web.cern.ch/e06/papers/thespa01.pdf

Laws of Physics, fine-tuned for a life-permitting universe Mc_cre10

https://www.quora.com/What-are-the-laws-of-physics

https://quod.lib.umich.edu/e/ergo/12405314.0006.042/--reasonable-little-question-a-formulation-of-the-fine-tuning?rgn=main;view=fulltext

Jacob Silverman  10 Scientific Laws and Theories You Really Should Know May 4, 2021
Big Bang Theory
Hubble's Law of Cosmic Expansion
Kepler's Laws of Planetary Motion
Universal Law of Gravitation
Newton's Laws of Motion
Laws of Thermodynamics
Archimedes' Buoyancy Principle
Evolution and Natural Selection
[url=https://science.howst



Last edited by Otangelo on Fri Mar 11, 2022 4:02 am; edited 96 times in total

https://reasonandscience.catsboard.com

Otangelo


Admin

The laws of physics: Hot to explain them?

https://reasonandscience.catsboard.com/t1336-laws-of-physics-fine-tuned-for-a-life-permitting-universe#1923

Physical laws are descriptive of what physicists discovered.  A fundamental constant, often called a free parameter, is a quantity whose numerical value can’t be determined by any computations. In this regard, it is the lowest building block of equations as these quantities have to be determined experimentally. The specific numbers in the mathematical equations that define the laws of physics cannot be derived from more fundamental things. They are just what they are, without further explanation. They are fundamental numbers that, when plugged into the laws of physics, determine the basic structure of the universe. In contrast, constants whose value can be deduced from other deeper facts about physics and math are called derived constants.

The electron mass, for example. The electron mass cannot be calculated, it is simply something that has been measured. And so its charge. Another is the speed of light. First, there is the mathematical form of the law, and second, there are various “constants” that come into the equations. Newton’s inverse square law of gravitation is an example. The mathematical form relates the gravitational force between two bodies to the distance between them. But Newton’s gravitational constant G also comes into the equation: it sets the actual strength of the force. When speculating about whether the laws of physics might be different in another cosmic region, we can imagine two possibilities. One is that the mathematical form of the law is unchanged, but one or more of the constants takes on a different value. The other, more drastic, the possibility is that the form of the law is different. The Standard Model of particle physics has twenty-odd undetermined parameters. These are key numbers such as particle masses and force strengths which cannot be predicted by the Standard Model itself but must be measured by experiment and inserted into the theory by hand. By tradition, physicists refer to these parameters as “constants of nature” because they seem to be the same throughout the observed universe. However, we have no idea why they are constant and (based on our present state of knowledge) no real justification for believing that, on a scale of size much larger than the observed universe, they are constant. If they can take on different values, then the question arises of what determines the values they possess in our cosmic region.  

PAUL DAVIES:  The Nature of the Laws of Physics and Their Mysterious Bio-Friendliness 2010
For example, there could be a strong nuclear force with 12 gluons instead of 8, there could be two flavors of electric charge and two distinct sorts of a photon, there could be additional forces above and beyond the familiar four. So the possibility arises of a domain structure in which the low-energy physics in each domain would be spectacularly different, not just in the “constants” such as masses and force strengths, but in the very mathematical form of the laws themselves. The universe on a mega-scale would resemble a cosmic United States of America, with different-shaped “states” separated by sharp boundaries. What we have hitherto taken to be universal laws of physics, such as the laws of electromagnetism, would be more akin to local by-laws, or state laws, rather than national or federal laws. And of this potpourri of cosmic regions, very few indeed would be suitable for life to local by-laws, or state laws, rather than national or federal laws. And of this potpourri of cosmic regions, very few indeed would be suitable for life.

These constants that cannot be predicted, just measured. They have to be verified by experiment. Simply put: we don’t know why they have that value. The Standard Model of particle physics alone contains 26 such free parameters. It contains both coupling constants  and particle masses.  It could have been given any value to these constants, since they are not bound to physical necessity.  They are in fact very precisely  adjusted, or fine-tuned, to produce the only kind of Universe that makes our existence possible.

All the known fundamental laws of physics are expressed in terms of differentiable functions defined over the set of real or complex numbers. The properties of the physical universe depend in an obvious way on the laws of physics, but the basic laws themselves depend not one iota on what happens in the physical universe. There is thus a fundamental asymmetry: the states of the world are affected by the laws, but the laws are completely unaffected by the states. Einstein was a physicist and he believed that math is invented and prescribed, not only discovered and described. His sharpest statement on this is his declaration that “the series of integers is obviously an invention of the human mind, a self-created tool which simplifies the ordering of certain sensory experiences.” All concepts, even those closest to experience, are from the point of view of logic freely chosen posits.

These adjusted laws and constants of the universe are an example of specified complexity in nature. They are complex in that their values and settings are highly unlikely. They are specified in that they match the specific requirements needed for to have a life-permitting universe. There are no constraints on the possible values that any of the constants can take. Specification or Instruction is a subjective measure. It is an independently given pattern. The laws of physics are a system of rules, a disembodied abstract entity,  and restricts how the physical world might operate.

The laws were imprinted on the universe at the beginning of the universe, and have since remained fixed in both space and time. The Laws of physics are like the computer software,, they institute how the universe works,  driving the physical universe, which corresponds to the hardware. Software has no function and cannot operate without hardware. And vice versa. They are interdependent. There would not be one without the other. Software is nonphysical, since it does not depend on the medium upon which it is written.

The Laws of Physics are intertwined with the universe and thus came into existence at the moment of the Big Bang. The ultimate source of the laws transcend the universe itself, i.e. to lie beyond the physical world.
A law is simply an idea, and an idea exists only in someone's mind. Since there is no mind in nature, nature itself has no intelligence of the laws which govern it. Modern science takes it for granted that the universe has always danced to rhythms it cannot hear, but still assigns power of motion to the dancers themselves. How is that possible? The power to make things happen in obedience to universal laws cannot reside in anything ignorant of these laws. Would it be more reasonable to suppose that this power resides in the laws themselves? Of course not. Ideas have no intrinsic power. They affect events only as they direct the will of a thinking person. Only a thinking person has the power to make things happen. Since natural events were lawful before man ever conceived of natural laws, the thinking person responsible for the orderly operation of the universe must be a higher Being, a Being we know as God.

PAUL DAVIES:  The Nature of the Laws of Physics and Their Mysterious Bio-Friendliness 2010
Now, it happens that to meet these various requirements, certain stringent conditions must be satisfied in the underlying laws of physics that regulate the universe, so stringent in fact that a bio-friendly universe looks like a fix – or “a put-up job”, to use the pithy description of the late British cosmologist Fred Hoyle. It appeared to Hoyle as if a super-intellect had been “monkeying” with the laws of physics. He was right in his impression. On the face of it, the universe does look as if it has been designed by an intelligent creator expressly for the purpose of spawning sentient beings. Like the porridge in the tale of Goldilocks and the three bears, the universe seems to be “just right” for life, in many intriguing ways. No scientific explanation for the universe can be deemed complete unless it accounts for this appearance of judicious design.

Beneath the surface complexity of nature lies a hidden subtext, written in a subtle mathematical code. This cosmic code contains the rules on which the universe runs. Newton, Galileo, and other early scientists treated their investigations as a religious quest. They thought that by exposing the patterns woven into the processes of nature they truly were glimpsing the mind of God.  For a start, there is no logical reason why nature should have a mathematical subtext in the first place.  You would never guess by looking at the physical world that beneath the surface hubbub of natural phenomena lies an abstract order, an order that cannot be seen or heard or felt, but only deduced. But right at the outset we encounter an obvious and profound enigma: Where do the laws of nature come from? Galileo, Newton and their contemporaries regarded the laws as thoughts in the mind of God, and their elegant mathematical form as a manifestation of God’s rational plan for the universe.  If they are not the product of divine providence, how can they be explained? We are then bound to ask, who or what wrote the script?  Can a truly absurd universe so convincingly mimic a meaningful one?

Question: When were the laws of physics created in context to the creation of the universe?
Answer: The Laws of Physics are intertwined with the universe and thus came into existence at the moment of the Big Bang.

Claim: Physical laws are only described, but not prescribed.
Reply: The physical universe works orderly based on mathematics. They exist, we did discover and find them.
The same is true of functional information. Science discovered of what's already there. But we need to find an adequate explanation of their origin. Both, the laws that enforce themselves of matter, as biological structures that arise based on genetic and epigenetic information. The formulation of mathematics, and codified information, is always tracked back to intelligence.

Claim: The laws of physics are descriptive, not prescriptive
Answer:  There is the mathematical form of the laws of physics, and second, there are various “constants” that come into the equations. The Standard Model of particle physics has twenty-odd undetermined parameters. These are key numbers such as particle masses and force strengths which cannot be predicted by the Standard Model itself but must be measured by experiment and inserted into the theory by hand. There is no reason or evidence to think that they are determined by any deeper level laws. Science has also no idea why they are constant. If they can take on different values, then the question arises of what determines the values they possess.
Paul Davies Superforce, page 243
All the evidence so far indicates that many complex structures depend most delicately on the existing form of these laws. It is tempting to believe, therefore, that a complex universe will emerge only if the laws of physics are very close to what they are....The laws, which enable the universe to come into being spontaneous, seem themselves to be the product of exceedingly ingenious design. If physics is the product of design, the universe must have a purpose, and the evidence of modern physics suggests strongly to me that the purpose includes us.
The existence of laws of nature is the starting point of science itself. But right at the outset, we encounter an obvious and profound enigma: Where do the laws of nature come from? As I have remarked, Galileo, Newton, and their contemporaries regarded the laws as thoughts in the mind of God, and their elegant mathematical form as a manifestation of God’s rational plan for the universe. The questions remain of why these laws have the form that they do. If they aren’t the product of divine providence, how can they be explained? The English astronomer James Jeans: “The universe appears to have been designed by a pure mathematician.”
Luke A. Barnes 2019: The standard model of particle physics and the standard model of cosmology (together, the standard models) contain 31 fundamental constants. About ten to twelve out of these above-mentioned constants, thirty-one total, exhibit significant fine-tuning. So why do we observe these 31 parameters to have particular values? Some of these parameters are fine-tuned for life. Small relative changes to their values would result in dramatic qualitative changes that could preclude intelligent life.
Wilczek (2006b): “It is logically possible that parameters determined uniquely by abstract theoretical principles just happen to exhibit all the apparent fine-tunings required to produce, by a lucky coincidence, a universe containing complex structures. But that, I think, really strains credulity.”




Blueprint for a Habitable Universe: Universal Constants - Cosmic Coincidences?
Next, let us turn to the deepest level of cosmic harmony and coherence - that of the elemental forces and universal constants which govern all of nature. Much of the essential design of our universe is embodied in the scaling of the various forces, such as gravity and electromagnetism, and the sizing of the rest mass of the various elemental particles such as electrons, protons, and neutrons.
There are certain universal constants that are indispensable for our mathematical description of the universe. These include Planck's constant, h; the speed of light, c; the gravity-force constant, G; the rest masses of the proton, electron, and neutron; the unit charge for the electron or proton; the weak force, strong nuclear force, electromagnetic coupling constants; and Boltzmann's constant, k.
When cosmological models were first developed in the mid-twentieth century, cosmologists naively assumed that the selection of a given set of constants was not critical to the formation of a suitable habitat for life. Through subsequent parametric studies that varied those constants, scientists now know that relatively small changes in any of the constants produce a dramatically different universe and one that is not hospitable to life of any imaginable type.
Twentieth-century physicists have identified four fundamental forces in nature. These may each be expressed as dimensionless numbers to allow a comparison of their relative strengths. These values vary by a factor of 1041 (10 with forty additional zeros after it), or by 41 orders of magnitude. Yet modest changes in the relative strengths of any of these forces and their associated constants would produce dramatic changes in the universe, rendering it unsuitable for life of any imaginable type. Several examples to illustrate this fine-tuning of our universe are presented next.
https://www.discovery.org/a/18843/

Max Tegmark et al.: Dimensionless constants, cosmology, and other dark matters 2006

The origin of the dimensionless numbers

So why do we observe these 31 parameters to have the particular values listed in Table I? Interest in that question has grown with the gradual realization that some of these parameters appear fine-tuned for life, in the sense that small relative changes to their values would result in dramatic qualitative changes that could preclude intelligent life, and hence the very possibility of reflective observation. There are four common responses to this realization:

(1) Fluke—Any apparent fine-tuning is a fluke and is best ignored
(2) Multiverse—These parameters vary across an ensemble of physically realized and (for all practical purposes) parallel universes, and we find ourselves in one where life is possible
(3) Design—Our universe is somehow created or simulated with parameters chosen to allow life.
(4) Fecundity—There is no fine-tuning because intelligent life of some form will emerge under extremely varied circumstances.

Options 1, 2, and 4 tend to be preferred by physicists, with recent developments in inflation and high-energy theory giving new popularity to option 2.

My comment:  This is an interesting confession. Pointing to option 2, a multiverse, is based simply on personal preference, but not on evidence.
https://sci-hub.ren/10.1103/physrevd.73.023505

Paul Davies: Taking Science on Faith
We are repeatedly told, is the most reliable form of knowledge about the world because it is based on testable hypotheses. Religion, by contrast, is based on faith. The term “doubting Thomas” well illustrates the difference. In science, a healthy skepticism is a professional necessity, whereas in religion, having belief without evidence is regarded as a virtue.

The problem with this neat separation into “non-overlapping magisteria,” as Stephen Jay Gould described science and religion, is that science has its own faith-based belief system. All science proceeds on the assumption that nature is ordered in a rational and intelligible way. You couldn’t be a scientist if you thought the universe was a meaningless jumble of odds and ends haphazardly juxtaposed. When physicists probe to a deeper level of subatomic structure, or astronomers extend the reach of their instruments, they expect to encounter additional elegant mathematical order. And so far this faith has been justified.
The most refined expression of the rational intelligibility of the cosmos is found in the laws of physics, the fundamental rules on which nature runs. The laws of gravitation and electromagnetism, the laws that regulate the world within the atom, the laws of motion — all are expressed as tidy mathematical relationships. But where do these laws come from? And why do they have the form that they do?

When I was a student, the laws of physics were regarded as completely off limits. The job of the scientist, we were told, is to discover the laws and apply them, not inquire into their provenance. The laws were treated as “given” — imprinted on the universe like a maker’s mark at the moment of cosmic birth — and fixed forevermore. Therefore, to be a scientist, you had to have faith that the universe is governed by dependable, immutable, absolute, universal, mathematical laws of an unspecified origin. You’ve got to believe that these laws won’t fail, that we won’t wake up tomorrow to find heat flowing from cold to hot, or the speed of light changing by the hour.

Continue reading the main story
Over the years I have often asked my physicist colleagues why the laws of physics are what they are. The answers vary from “that’s not a scientific question” to “nobody knows.” The favorite reply is, “There is no reason they are what they are — they just are.” The idea that the laws exist reasonlessly is deeply anti-rational. After all, the very essence of a scientific explanation of some phenomenon is that the world is ordered logically and that there are reasons things are as they are. If one traces these reasons all the way down to the bedrock of reality — the laws of physics — only to find that reason then deserts us, it makes a mockery of science.

Can the mighty edifice of physical order we perceive in the world about us ultimately be rooted in reasonless absurdity? If so, then nature is a fiendishly clever bit of trickery: meaninglessness and absurdity somehow masquerading as ingenious order and rationality.

Although scientists have long had an inclination to shrug aside such questions concerning the source of the laws of physics, the mood has now shifted considerably. Part of the reason is the growing acceptance that the emergence of life in the universe, and hence the existence of observers like ourselves, depends rather sensitively on the form of the laws. If the laws of physics were just any old ragbag of rules, life would almost certainly not exist.

A second reason that the laws of physics have now been brought within the scope of scientific inquiry is the realization that what we long regarded as absolute and universal laws might not be truly fundamental at all, but more like local bylaws. They could vary from place to place on a mega-cosmic scale. A God’s-eye view might reveal a vast patchwork quilt of universes, each with its own distinctive set of bylaws. In this “multiverse,” life will arise only in those patches with bio-friendly bylaws, so it is no surprise that we find ourselves in a Goldilocks universe — one that is just right for life. We have selected it by our very existence.

The multiverse theory is increasingly popular, but it doesn’t so much explain the laws of physics as dodge the whole issue. There has to be a physical mechanism to make all those universes and bestow bylaws on them. This process will require its own laws, or meta-laws. Where do they come from? The problem has simply been shifted up a level from the laws of the universe to the meta-laws of the multiverse.

Clearly, then, both religion and science are founded on faith — namely, on belief in the existence of something outside the universe, like an unexplained God or an unexplained set of physical laws, maybe even a huge ensemble of unseen universes, too. For that reason, both monotheistic religion and orthodox science fail to provide a complete account of physical existence.

This shared failing is no surprise, because the very notion of physical law is a theological one in the first place, a fact that makes many scientists squirm. Isaac Newton first got the idea of absolute, universal, perfect, immutable laws from the Christian doctrine that God created the world and ordered it in a rational way. Christians envisage God as upholding the natural order from beyond the universe, while physicists think of their laws as inhabiting an abstract transcendent realm of perfect mathematical relationships.

And just as Christians claim that the world depends utterly on God for its existence, while the converse is not the case, so physicists declare a similar asymmetry: the universe is governed by eternal laws (or meta-laws), but the laws are completely impervious to what happens in the universe.

It seems to me there is no hope of ever explaining why the physical universe is as it is so long as we are fixated on immutable laws or meta-laws that exist reasonlessly or are imposed by divine providence. The alternative is to regard the laws of physics and the universe they govern as part and parcel of a unitary system, and to be incorporated together within a common explanatory scheme.

In other words, the laws should have an explanation from within the universe and not involve appealing to an external agency. The specifics of that explanation are a matter for future research. But until science comes up with a testable theory of the laws of the universe, its claim to be free of faith is manifestly bogus.
http://www.nytimes.com/2007/11/24/opinion/24davies.html?ref=opinion

Stephen C.Meyer: The return of the God hypothesis, page 170
The most fundamental type of fine-tuning pertains to the laws of physics and chemistry. Typically, when physicists say that the laws of physics exhibit fine-tuning, they are referring to the constants within those laws. But what exactly are the “constants” of the laws of physics? The laws of physics usually relate one type of variable quantity to another. A physical law could tell us that as one variable (say, force) increases, another (say, acceleration) also increases proportionally by some factor. Physicists describe this type of relationship by saying that one variable quantity is proportional to another. Conversely, a physical law may stipulate that as one-factor increases, another decreases by the same factor. Physicists describe this type of relationship by saying that the first variable quantity is inversely proportional to the other. Newton’s classical law of gravity, like most laws of physics, has a form expressing such relationships. The gravitational force equation asserts that the force of gravity between two bodies is proportional to the product of the masses of those bodies. It also stipulates that the force of gravity is inversely proportional to the distance between the bodies squared. Yet even if physicists know the exact masses of the bodies and the distance between their centers, that by itself doesn’t allow them to compute the exact force of gravity. Instead, an additional factor known as the gravitational force constant first has to be determined by careful experimental measurements. The gravitational force constant represents a kind of mysterious “X factor” that allows physicists to move beyond just knowing proportionality relationships—that is, that certain factors increase or decrease as other factors increase or decrease. Instead, it allows physicists to compute the force of gravity accurately if they know the values of those other variable quantities (mass and distance) and the value of the constant of proportionality.

To explain the idea of a constant of proportionality, here’s a thought experiment I used with my students. There was a Russian pole vaulter I admired named Sergey Bubka. In the 1980s and 1990s, Sergey set numerous pole-vaulting records. Now imagine you are a muscular vaulter like Sergey. You charge down the tarmac, plant your pole, and you begin to lift off, hoping to clear, say, 20 feet 3 inches, and set a new world record. Yet as you’re about 10 feet in the air, some evil demon suddenly fiddles with the dials in the cosmic control room that sets the force constants for all the laws of physics. In the process, the demon changes the gravitational force constant. Your mass is still 100 kilograms, the earth still has the same mass (5.9736 x 1024 kilograms), and you are at that moment still roughly 10 feet away from the earth, as you were an instant before. But now, because the gravitational force constant has changed, the force of gravity acting on you has changed dramatically. On the basis of Newton’s gravitational force equation, with the old gravitational force constant, you should clear the 20-foot, 3-inch bar with no trouble at all. (Yes, you’re that good!) But now, due to that capricious cosmic fiddler, the force between you and the earth becomes much stronger. Consequently, your pole snaps and you crash to the earth.
https://3lib.net/book/11927916/fd66b9

Charles Townes Nobel Prize Winner on Evolution, Intelligent Design, and the Meaning of Life,” UC Berkeley NewsCenter, June 17, 2005, 
This is a very special universe: it’s remarkable that it came out just this way. If the laws of physics weren’t just the way they are, we couldn’t be here at all. The sun couldn’t be there, the laws of gravity and nuclear laws and magnetic theory, quantum mechanics, and so on have to be just the way they are for us to be here.” 

Carroll defines naturalism not only as the idea that “there’s only the natural world” and “no spirits, no deities, or anything else,” but also as the idea that “there is a chain of explanations concerning things that happen in the universe, which ultimately reaches to the fundamental laws of nature and stops.” 
]https://www.berkeley.edu/news/media/releases/2005/06/17_townes.shtml]

Sean Carroll: Turtles Much of the Way Down 2007
Are the laws of physics somehow inevitable? I don’t think that they are, and if they were I don’t think it would count as much of an “explanation,” but your mileage may vary. More importantly, we just don’t have the right to make deep proclamations about the laws of nature ahead of time — it’s our job to figure out what they are, and then deal with it. Maybe they come along with some self-justifying “explanation,” maybe they don’t. Maybe they’re totally random. We will hopefully discover the answer by doing science, but we won’t make progress by setting down demands ahead of time.

Why do the laws of physics take the form they do? The universe (in the sense of “the entire natural world,” not only the physical region observable to us) isn’t embedded in a bigger structure; it’s all there is. I can think of a few possibilities. One is logical necessity: the laws of physics take the form they do because no other form is possible. But that can’t be right; it’s easy to think of other possible forms. The universe could be a gas of hard spheres interacting under the rules of Newtonian mechanics, or it could be a cellular automaton, or it could be a single point. Another possibility is external influence: the universe is not all there is, but instead is the product of some higher (supernatural?) power. The final possibility, which seems to be the right one, is: that’s just how things are. There is a chain of explanations concerning things that happen in the universe, which ultimately reaches to the fundamental laws of nature and stops. The reason why it’s hard to find an explanation for the laws of physics within the universe is that the concept makes no sense. At the end of the day the laws are what they are. . I’m happy to take the universe just as we find it; it’s the only one we have.
https://www.preposterousuniverse.com/blog/2007/11/25/turtles-much-of-the-way-down/

My comment: So it boils down to either a) God created the physical laws, or b) they just are, and there is no further explanation. They are simply brute facts. How does that make sense? This is a nice example, where we can make sense of our world, positing God as the ultimate, necessary and fundamental being which created all contingent things, or we have to stick to agnosticism and be happy living in a world where we don't know our meaning, where we came from, where we go, and that leads in the end to nihilism. The sobering realization that we live in a world which we cannot make sense of.  

Evidence of Design in Natural Law
One remarkable feature of the natural world is that all of its phenomena obey relatively simple laws. The scientific enterprise exists because man has discovered that wherever he probes nature, he finds laws shaping its operation.

If all natural events have always been lawful, we must presume that the laws came first. How could it be otherwise? How could the whole world of nature have ever precisely obeyed laws that did not yet exist? But where did they exist? A law is simply an idea, and an idea exists only in someone's mind. Since there is no mind in nature, nature itself has no intelligence of the laws which govern it.

Modern science takes it for granted that the universe has always danced to rhythms it cannot hear, but still assigns power of motion to the dancers themselves. How is that possible? The power to make things happen in obedience to universal laws cannot reside in anything ignorant of these laws.

Would it be more reasonable to suppose that this power resides in the laws themselves? Of course not. Ideas have no intrinsic power. They affect events only as they direct the will of a thinking person. Only a thinking person has the power to make things happen. Since natural events were lawful before man ever conceived of natural laws, the thinking person responsible for the orderly operation of the universe must be a higher Being, a Being we know as God. 

https://www.themoorings.org/theistic_arguments/teleological/math_and_science.html

Geraint Lewis Why do the laws of physics permit any life at all? SEPTEMBER 15, 2015
The universe is built of fundamental pieces, particles and forces, which are the building blocks of everything we see around us. And we simply don't know why these pieces have the properties they do. There are many observational facts about our universe, such as electrons weighing almost nothing, while some of their quark cousins are thousands of times more massive. And gravity being incredibly weak compared to the immense forces that hold atomic nuclei together.

Why is our universe built this way? We just don't know. Straying just a little from the convivial conditions that we experience in our universe typically leads to a sterile cosmos.
This might be a bland universe, without the complexity required to store and process the information central to life. Or a universe that expands too quickly for matter to condense into stars, galaxies and planets. Or one that completely re-collapses again in a matter of moments after being born. Any complex life would be impossible! In our universe, we live with the comfort of a certain mix of space and time, and a seemingly understandable mathematical framework that underpins science as we know it. Why is the universe so predictable and understandable? Would we be able to ask such a question if it wasn't? 
Our universe appears to balance on a knife-edge of stability. But why?
https://phys.org/news/2015-09-lucky-universe.html


Swinburne University of Technology Laws of physics vary throughout the universe, a new study suggests September 9, 2010 
A team of astrophysicists based in Australia and England has uncovered evidence that the laws of physics are different in different parts of the universe. The report describes how one of the supposed fundamental constants of Nature appears not to be constant after all. Instead, this 'magic number' known as the fine-structure constant -- 'alpha' for short -- appears to vary throughout the universe.
[url=https://www.sciencedaily.com/releases/2010/09/100909004112.htm#:~:text=Laws of physics vary throughout the universe%2C new study suggests,-Date%3A September]https://www.sciencedaily.com/releases/2010/09/100909004112.htm#:~:text=Laws%20of%20physics%20vary%20throughout%20the%20universe%252C%20new%20study%20suggests,-Date%253A%20September[/url]

My comment: If the laws of physics can change, then the fact that they are set to permit a life permitting unverse requires an explanation. And that also means, that they are prescribed, rather than a lucky event of stochastic trial and error.

CHRIS LEE  Fine structure constant may vary with space, constant in time 4/28/2020 
The fine structure constant has not changed in time. The researchers then combined their results with all the previous studies. The resulting 320 measurements, spanning from a billion years in the past to around 12 billion years in the past—a good chunk of the life of the Universe—showed that the fine structure constant is constant. They then looked at how their results fit with more recent findings: that the fine structure constant varies with direction. Earlier results have shown that the fine structure is slightly different along a specific axis of the Universe, called a dipole. Now, the latest result is from a single light source along a specific direction, so it's not definitive on its own. Yet the result fits with the previous data. (I guess, given the paucity of data, it is better to say that it doesn’t contradict the previous measurements.)
[url=https://arstechnica.com/science/2020/04/fine-structure-constant-may-vary-with-space-constant-in-time/#:~:text=The fine structure constant has not changed in]https://arstechnica.com/science/2020/04/fine-structure-constant-may-vary-with-space-constant-in-time/#:~:text=The%20fine%20structure%20constant%20has%20not%20changed%20in[/url]

Following paper says that the laws of physics do NOT change across the universe:


AVERY THOMPSON Scientists Stared at Clocks for 14 Years to Try and Catch the Laws of Physics Changing JUL 27, 2018
Although absolute proof of their immutability will always elude us, we can be reasonably sure that the laws of physics won’t change.
https://www.popularmechanics.com/science/a22575842/do-the-universes-rules-ever-change/#:~:text=When%20we%20pointed%20our%20telescopes,everywhere%20and%20for%20all%20time.&text=There%27s%20no%20way%20to%20be%20completely%20sure%20without%20observing%20the%20entire%20universe.


Neil de Grasse Tyson  On Earth As in the Heavens November 2000
 More important than our laundry list of shared ingredients was the recognition that whatever laws of physics prescribed the formation of these spectral signatures on the Sun, the same laws were operating on Earth, ninety-three million miles away Science thrives not only on the universality of physical laws but also on the existence and persistence of physical constants. The constant of gravitation, known by most scientists as “big G”, supplies Newton’s equation of gravity with the measure of how strong the force will be, and has been implicitly tested for variation over eons. If you do the math, you can determine that a star’s luminosity is steeply dependent on big G. In other words, if big G had been even slightly different in the past, then the energy output of the Sun would have been far more variable than anything that the biological, climatological, or geological records indicate. In fact, no time-dependent or location-dependent fundamental constants are known—they appear to be truly constant.

The good thing about the laws of physics is that they require no law enforcement agencies to maintain them, although I do own a nerdy T-shirt that says OBEY GRAVITY. Many natural phenomena reflect the interplay of multiple physical laws operating at once. The physical laws governing nuclear reactions in these stars then produced the stuff that life’s made of – carbon, nitrogen and oxygen. So how come all the physical laws and parameters in the universe happen to have the values that allowed stars, planets and ultimately life to develop?
https://www.haydenplanetarium.org/tyson/essays/2000-11-on-earth-as-in-the-heavens.php

Robert_s/Shutterstock Can the laws of physics disprove God? February 22, 2021
Some argue it’s just a lucky coincidence. Others say we shouldn’t be surprised to see biofriendly physical laws – they after all produced us, so what else would we see? Some theists, however, argue it points to the existence of a God creating favourable conditions. But God isn’t a valid scientific explanation. The theory of the multiverse, instead, solves the mystery because it allows different universes to have different physical laws. 
https://theconversation.com/can-the-laws-of-physics-disprove-god-146638

My comment: How is a multiverse a scientific explanation if there is no evidence whatsoever that there are other universes beyond ours?

Vasudevan Mukunth Is the Universe As We Know it Stable?  11/NOV/2015
If the laws and equations that define it had slipped during its formation just one way or the other in its properties, humans wouldn’t have existed to be able to observe the universe.
https://thewire.in/science/is-the-universe-as-we-know-it-stable


P.C.W. Davies THE IMPLICATIONS OF A COSMOLOGICAL INFORMATION BOUND FOR COMPLEXITY, QUANTUM INFORMATION AND THE NATURE OF PHYSICAL LAW 6 Mar 2007
If instead the laws of physics are regarded as akin to computer software, with the physical universe as the corresponding hardware, then the finite computational capacity of the universe imposes a fundamental limit on the precision of the laws and the specifiability of physical states. All the known fundamental laws of physics are expressed in terms of differentiable functions defined over the set of real or complex numbers. What are the laws of physics and where do they come from? The subsidiary question, Why do they have the form that they do? First let me articulate the orthodox position, adopted by most theoretical physicists, which is that the laws of physics are immutable: absolute, eternal, perfect mathematical relationships, infinitely precise in form. The laws were imprinted on the universe at the moment of creation, i.e. at the big bang, and have since remained fixed in both space and time. The properties of the physical universe depend in an obvious way on the laws of physics, but the basic laws themselves depend not one iota on what happens in the physical universe. There is thus a fundamental asymmetry: the states of the world are affected by the laws, but the laws are completely unaffected by the states – a dualism that goes back to the foundation of physics with Galileo and Newton. The ultimate source of the laws is left vague, but it is tacitly assumed to transcend the universe itself, i.e. to lie beyond the physical world, and therefore beyond the scope of scientific inquiry. Einstein was a physicist and he believed that math is invented, not discovered. His sharpest statement on this is his declaration that “the series of integers is obviously an invention of the human mind, a self-created tool which simplifies the ordering of certain sensory experiences.” All concepts, even those closest to experience, are from the point of view of logic freely chosen posits. . .
https://arxiv.org/pdf/math/0302333.pdf


1. The Laws of physics and constants, the initial conditions of the universe, the expansion rate of the Big bang, atoms and the subatomic particles, the fundamental forces of the universe, stars, galaxies, the Solar System, the earth, the moon, the atmosphere, water, and even biochemistry on a molecular level, and the bonding forces of molecules like Watson-Crick base-pairing are finely tuned in an unimaginably narrow range to permit life. In 2008, Hugh Ross mentioned 140 features of the cosmos as a whole (including the laws of physics), and over 1300 quantifiable characteristics of a planetary system and its galaxy that must fall within extremely narrow ranges to allow for the possibility of advanced life’s existence. Since then, that number has doubled.
2. Penrose estimated that the odds of the initial low entropy state of our universe occurring by chance alone are on the order of 1 in 10 10^123. Ross calculated that less than 1 chance in 10^1032 power exists that even one life-support planet would occur anywhere in the universe without invoking divine miracles. There is an estimation of 10^80 power of atoms in the universe.
3. Of course, if there is a physical necessity, that does not permit a non-life-permitting universe, in other words, if the state of affairs is, that the universe could not other than have exactly these parameters to permit life, then any statistical probability calculations are meaningless. If the state of affairs however can change, then this fact demands a very good explanation.
4. There are infinite possible ways that the values fundamental constants of the standard models could have been chosen. In fact, Paul Davies states: “There is not a shred of evidence that the Universe is logically necessary. Indeed, as a theoretical physicist I find it rather easy to imagine alternative universes that are logically consistent, and therefore equal contenders of reality”
5. The laws of physics, constants, and the fine-tune parameters can change. Not all laws of nature can become scientific laws because many will not create a scientist. A randomly chosen universe is extraordinarily unlikely to have the right conditions for life, but likely on theism, since a powerful, extraordinarily intelligent designer has the ability of foresight, and knowledge of what parameters, laws of physics, and finely-tuned conditions would permit a life-permitting universe. The existence of our universe, and us, is very improbable on naturalism and very likely on theism.
6. Therefore the fact that they are set up to instantiate a life-permitting universe is best explained by a lawgiver and fine tuner. Which is God.

1. If the laws of physics can change, then the fact that they are set to permit a life-permitting universe demands an explanation.
2. If they cannot change, then they are due to physical necessity, and invoking a lawgiver, who did set them up is not necessary.
3. There are infinite possible ways that the values fundamental constants of the standard models could have been chosen.
4. The laws of physics can change, therefore the fact that they are set up to instantiate a life-permitting universe is best explained by a lawgiver. That lawgiver is God.

1. The Laws of physics are like the computer software, driving the physical universe, which corresponds to the hardware. All the known fundamental laws of physics are expressed in terms of differentiable functions defined over the set of real or complex numbers. The properties of the physical universe depend in an obvious way on the laws of physics, but the basic laws themselves depend not one iota on what happens in the physical universe.There is thus a fundamental asymmetry: the states of the world are affected by the laws, but the laws are completely unaffected by the states. Einstein was a physicist and he believed that math is invented, not discovered. His sharpest statement on this is his declaration that “the series of integers is obviously an invention of the human mind, a self-created tool which simplifies the ordering of certain sensory experiences.” All concepts, even those closest to experience, are from the point of view of logic freely chosen posits. . .
2. The laws of physics are immutable: absolute, perfect mathematical relationships, infinitely precise in form. The laws were imprinted on the universe at the moment of creation, i.e. at the big bang, and have since remained fixed in both space and time. 
3. The ultimate source of the laws transcend the universe itself, i.e. to lie beyond the physical world. The only rational inference is that the physical laws emanate from the mind of God. 
https://arxiv.org/pdf/math/0302333.pdf

1. Laws and mathematical formulas objectively, exist and originate in the mind of conscious intelligent beings.
2. The physical laws that govern the physical universe therefore had to emerge from a mind.
3. We call that the mind of GOD

1. The laws of physics are immutable: absolute, eternal, perfect mathematical relationships, infinitely precise in form.
2. The laws were imprinted on the universe at the moment of creation, i.e. at the big bang, and have since remained fixed in both space and time.
3. The ultimate source of the laws transcend the universe itself, i.e. to lie beyond the physical world.
4. Laws and mathematical formulas objectively, exist, and originate in the mind of conscious intelligent beings.
5. Therefore, the physical laws that govern the universe came from God.

1. The laws of physics are immutable: absolute, eternal, perfect mathematical relationships, infinitely precise in form.
2. The laws were imprinted on the universe at the moment of creation, i.e. at the big bang, and have since remained fixed in both space and time.
3. The ultimate source of the laws transcend the universe itself, i.e. to lie beyond the physical world.

The argument of the supervision of order
1. We find in nature many laws like the law of gravitation, the laws of motion, the laws of thermodynamics.
2. Just as in any state, the government or the king makes different laws and supervises their subjects that the laws are carried out, so the laws of nature had to be generated and supervised by some intelligent being.
3. So, for everything that happens according to those laws there has to be a supervisor or controller.
4. Man can create small laws and control limited things in his domain, but nature’s grand laws had to be created by a big brain, an extraordinarily powerful person who can supervise that those laws are carried out.
5. Such an extraordinary, omnipotent person can be only God.
6. Hence, God exists.

The argument of the nature of established laws
1. Physical or scientific law is a scientific generalization based on empirical observations of physical behavior. Law is defined in the following ways:
a. Absolute. Nothing in the universe appears to affect them. (Davies, 1992:82)
b. Stable. They are unchanged since they were first discovered (although they may have been shown to be approximations of more accurate laws).
c. Omnipotent. Everything in the universe apparently must comply with them (according to observations). (Davies, 1992:83)
2. Some of the examples of scientific or nature’s laws are:
a. The law of relativity by Einstein.
b. The four laws of thermodynamics.
c. The laws of conservation of energy.
d. The uncertainty principle etc.
e. Biological laws
i. Life is based on cells.
ii. All life has genes.
iii. All life occurs through biochemistry.
iv. Mendelian inheritance.
f. Conservation Laws.
i. Noether's theorem.
ii. Conservation of mass.
iii. Conservation of energy, momentum and angular momentum.
iv. Conservation of charge .
3. Einstein said that the laws already exist, man just discovers them.
4. Only an omnipotent, absolute eternal person can give absolute, stable and omnipotent laws for the whole universe.
5. That person all men call God.
6. Hence God exists.

A null test of general relativity based on a long-term comparison of atomic transition frequencies 04 June 2018
https://www.nature.com/articles/s41567-018-0156-2?utm_medium=affiliate&utm_source=commission_junction&utm_campaign=3_nsn6445_deeplink_PID100052570&utm_content=deeplink

Nature is governed by simple laws.
https://blogs.scientificamerican.com/observations/deep-in-thought-what-is-a-law-of-physics-anyway/

Four direct measurements of the fine-structure constant 13 billion years ago  24 Apr 2020:
https://advances.sciencemag.org/content/6/17/eaay967



Last edited by Otangelo on Tue Jan 18, 2022 3:19 pm; edited 34 times in total

https://reasonandscience.catsboard.com

Otangelo


Admin

PAUL DAVIES:  The Nature of the Laws of Physics and Their Mysterious Bio-Friendliness 2010
For life to emerge, and then to evolve into conscious beings like ourselves, certain conditions have to be satisfied. Among the many prerequisites for life – at least, for life as we know it – is a good supply of the various chemical elements needed to make biomass. Carbon is the key life-giving element, but oxygen, hydrogen, nitrogen, sulfur, and phosphorus are crucial too. Liquid water is another essential ingredient. Life also requires an energy source, and a stable environment, which in our case are provided by the Sun. There have to be the right sorts of forces acting between particles of matter to make stable atoms, complex molecules, planets, and stars. If almost any of the basic features of the universe, from the properties of atoms to the distribution of the galaxies, were different, life would very probably be impossible. Now, it happens that to meet these various requirements, certain stringent conditions must be satisfied in the underlying laws of physics that regulate the universe, so stringent in fact that a bio-friendly universe looks like a fix – or “a put-up job”, to use the pithy description of the late British cosmologist Fred Hoyle. It appeared to Hoyle as if a super-intellect had been “monkeying” with the laws of physics. He was right in his impression. On the face of it, the universe does look as if it has been designed by an intelligent creator expressly for the purpose of spawning sentient beings. Like the porridge in the tale of Goldilocks and the three bears, the universe seems to be “just right” for life, in many intriguing ways. No scientific explanation for the universe can be deemed complete unless it accounts for this appearance of judicious design. Until recently, “the Goldilocks factor” was almost completely ignored by scientists. Now, that is changing fast. Science is, at last, coming to grips with the enigma of why the universe is so uncannily fit for life. The explanation entails understanding how the universe began and evolved into its present form, and knowing what matter is made of and how it is shaped and structured by the different forces of nature. Above all, it requires us to probe the very nature of physical laws.

The Cosmic Code
Science is familiar, and familiarity breeds contempt. People show little surprise that science actually works, that we are in possession of the key to the universe. Beneath the surface complexity of nature lies a hidden subtext, written in a subtle mathematical code. This cosmic code contains the rules on which the universe runs. Newton, Galileo, and other early scientists treated their investigations as a religious quest. They thought that by exposing the patterns woven into the processes of nature they truly were glimpsing the mind of God. Modern scientists are mostly not religious, yet they still accept that an intelligible script underlies the workings of nature, for to believe otherwise would undermine the very motivation for doing research, which is to uncover something meaningful about the world that we do not already know. Finding the key to the universe was by no means inevitable. For a start, there is no logical reason why nature should have a mathematical subtext in the first place. And even if it does, there is no obvious reason why humans should be capable of comprehending it. You would never guess by looking at the physical world that beneath the surface hubbub of natural phenomena lies an abstract order, an order that cannot be seen or heard or felt, but only deduced. Even the wisest mind could not tell merely from daily experience that the diverse physical systems making up the cosmos are linked, deep down, by a network of  coded mathematical relationships. Yet science has uncovered the existence of this concealed mathematical domain. We human beings have been made privy to the deepest workings of the universe. Alone among the creatures on this planet, Homo sapiens can also explain the laws of nature. How has this come about? The evolving cosmos has spawned beings that are able not merely to watch the show, but to unravel the plot. What is it that enables something as small and delicate and adapted to terrestrial life as the human brain to engage with the totality of the cosmos and the silent mathematical tune to which it dances? Could it just be a fluke? Might the fact that the deepest level of reality has connected to a quirky natural phenomenon we call “the human mind” represent nothing but a bizarre and temporary aberration in an absurd and pointless universe? Or is there an even deeper subplot at work?

The Concept of Laws 
The founding assumption of science is that the physical universe is neither arbitrary nor absurd; it is not just a meaningless jumble of objects and phenomena haphazardly juxtaposed. Rather, there is a coherent scheme of things. This is often expressed by the simple aphorism that there is order in nature. But scientists have gone beyond this vague notion to formulate a system of well-defined laws. The existence of laws of nature is the starting point of science. But right at the outset we encounter an obvious and profound enigma: Where do the laws of nature come from? Galileo, Newton and their contemporaries regarded the laws as thoughts in the mind of God, and their elegant mathematical form as a manifestation of God’s rational plan for the universe. Few scientists today would describe the laws of nature using such quaint language. Yet the questions remain of what these laws are and why they have the form that they do. If they are not the product of divine providence, how can they be explained? By the thirteenth century, European theologians and scholars such as Roger Bacon had arrived at the conclusion that laws of nature possess a mathematical basis, a notion that dates back to the Pythagoreans. Given the cultural background, it is no surprise that when modern science emerged in Christian Europe in the sixteenth and seventeenth centuries, it was perfectly natural for the early scientists to believe that the laws they were discovering in the heavens and on Earth were the mathematical manifestations of God’s ingenious handiwork. Even atheistic scientists will wax lyrical about the scale, the majesty, the harmony, the elegance, the sheer ingenuity of the universe of which they form so small and fragile a part. As the great cosmic drama unfolds before us, it begins to look as though there is a “script” – a scheme of things – which its evolution is following. We are then bound to ask, who or what wrote the script? Or did the script somehow, miraculously, write itself? Is the great cosmic text laid down once and for all, or is the universe, or the invisible author, making it up as it goes along? Is this the only drama being staged, or is our universe just one of many shows in town? The fact that the universe conforms to an orderly scheme, and is not an arbitrary muddle of events, prompts one to wonder – God or no God – whether there is some sort of meaning or purpose behind it all. Many scientists are quick to pour scorn even on this weaker suggestion, however. Richard Feynman, arguably the finest theoretical physicist of the mid-twentieth century thought that “the great accumulation of understanding as to how the physical world behaves only convinces one that this behavior has a kind of meaninglessness about it”. This sentiment is echoed by the theoretical physicist and cosmologist Steven Weinberg: “The more the universe seems comprehensible the more it also seems pointless.” To be sure, concepts like “meaning” and “purpose” are categories devised by humans, and we must take care when attempting to project them onto the physical universe. But all attempts to describe the universe scientifically draw on human concepts: science proceeds precisely by taking concepts that humans have thought up, often from everyday experience, and applying them to nature. Doing science means figuring out what is going on in the world – what the universe is “up to”, what it is “about”. If it isn’t “about” anything, there would be no good reason to embark on the scientific quest in the first place, because we would have no rational basis for believing that we could thereby uncover additional coherent and meaningful facts about the world. So we might justifiably invert Weinberg’s dictum and say that the more the universe seems pointless, the more it also seems incomprehensible. Of course, scientists might be deluded in their belief that they are finding systematic and coherent truth in the workings of nature. Ultimately there may be no reason at all for why things are the way they are. But that would make the universe a fiendishly clever bit of trickery. Can a truly absurd universe so convincingly mimic a meaningful one?

My comment: If the universe displays an abstract order, conditions that are regulated, if it looks like a put-up job, a fix, if there is a mathematical subtext, then this points to a creator, which had a plan, and therefore, there is also a meaning for its existence, and why God created it. 

Are the Laws Real? 
The fact that the physical world conforms to mathematical laws led Galileo to make a famous remark. “The great book of nature,” he wrote, “can be read-only by those who know the language in which it was written. And this language is mathematics.” The same point was made more bluntly three centuries later by the English cosmologist James Jeans: “The universe appears to have been designed by a pure mathematician.” It is the mathematical aspect that makes possible what physicists mean by the much-misunderstood word “theory.” Theoretical physics entails writing down equations that capture (or model, as scientists say) the real world of experience in a mathematical world of numbers and algebraic formulas. Then, by manipulating the mathematical symbols, one can work out what will happen in the real world, without actually carrying out the observation! That is, by applying the equations that express the laws relevant to the problem of interest, the theoretical physicist can predict the answer. And it works! But why is nature shadowed by a mathematical reality? Given that the laws of physics underpin the entire scientific enterprise, it is curious that very few scientists bother to ask what these laws actually mean. Speak to physicists, and most of them will talk as if the laws are real things – not physical objects of course, but abstract relationships between physical entities. Importantly, though, they are relationships that really exist, “out there” in the world, and not just in our heads. The idea of laws began as a way of formalizing patterns in nature that connect together physical events. Physicists became so familiar with the laws that somewhere along the way the laws themselves – as opposed to the events they describe – became promoted to reality. The laws took on a life of their own. One reason for this way of thinking about the laws concerns the role of mathematics. Numbers began as a way of labeling and tallying physical things such as beads or sheep. As the subject of mathematics developed, and extended from simple arithmetic into geometry, algebra, calculus, and so forth, so these mathematical objects and relationships came to assume an independent existence. Mathematicians believe that statements such as “3 × 5 = 15” and “11 is a prime number” are inherently true – in some absolute and general sense – without being restricted to “three sheep” or “eleven beads.” Plato considered the status of mathematical objects, and chose to locate numbers and idealized geometrical shapes in an abstract realm of perfect forms. In this Platonic heaven there would be found, for example, perfect circles – as opposed to the circles we encounter in the real world, which will always be flawed approximations to the ideal. Many modern mathematicians are Platonists (at least at weekends). They believe that mathematical objects have real existence, yet are not situated in the physical universe. Theoretical physicists, who are steeped in the Platonic tradition, also find it natural to locate the mathematical laws of physics in a Platonic realm.

Does a Multiverse Explain the Goldilocks Enigma? 
A popular explanation for the Goldilocks enigma is the multiverse theory, according to which what we have all along been calling “the universe” is, in this theory, just an infinitesimal part of a single “bubble,” or pocket universe, set amid an infinite assemblage of universes – a multiverse. This follows naturally if we regard the Big Bang origin of our universe as a natural physical process, in which case it cannot be unique. There will be many big bangs scattered throughout space and time. An explicit model of multiple big bangs is the theory of eternal inflation, which describes an inexhaustible universe-generating mechanism, of which our universe – our bubble – is but one product. Each pocket universe will be born in a burst of heat liberated in that bubble when inflation ceases, will go on to enjoy a life-cycle of evolution, and will perhaps eventually suffer death, but the assemblage as a whole is immortal. Life will arise only in those universes, or cosmic regions, where conditions favor life. Universes that cannot support life will go unobserved. It is therefore no surprise that we find ourselves located in a universe which is suited to life, for observers like us could not have emerged in a sterile universe. If the universes vary at random, then we would be winners in a gigantic cosmic lottery which created the illusion of design. Like many winners of national lotteries, we may mistakenly attribute some deep significance to our having won (being smiled on by Lady Luck, or suchlike) whereas in reality, our success boils down to chance. However, to explain the cosmic “coincidences” this way – that is, in terms of observer selection – the laws of physics themselves would have to vary from one cosmic region to another. Is this credible? If so, how could it happen? Laws of physics have two features that might in principle vary from one universe to another. First, there is the mathematical form of the law, and second, there are various “constants” that come into the equations. Newton’s inverse square law of gravitation is an example. The mathematical form relates the gravitational force between two bodies to the distance between them. But Newton’s gravitational constant G also comes into the equation: it sets the actual strength of the force. When speculating about whether the laws of physics might be different in another cosmic region, we can imagine two possibilities. One is that the mathematical form of the law is unchanged, but one or more of the constants takes on a different value. The other, more drastic, the possibility is that the form of the law is different. The Standard Model of particle physics has twenty-odd undetermined parameters. These are key numbers such as particle masses and force strengths which cannot be predicted by the Standard Model itself but must be measured by experiment and inserted into the theory by hand. Nobody knows whether the measured values of these parameters will one day be explained by a deeper unified theory that goes beyond the Standard Model, or whether they are genuinely free parameters that are not determined by any deeper level laws. If the latter is correct, then the numbers are not God-given and fixed but could take on different values without conflicting with any physical laws. By tradition, physicists refer to these parameters as “constants of nature” because they seem to be the same throughout the observed universe. However, we have no idea why they are constant and (based on our present state of knowledge) no real justification for believing that, on a scale of size much larger than the observed universe, they are constant. If they can take on different values, then the question arises of what determines the values they possess in our cosmic region. A possible answer comes from Big Bang cosmology. According to orthodox theory, the universe was born with the values of these constants laid down once and for all, from the outset. But some physicists now suggest that perhaps the observed values were generated by some sort of complicated physical processes in the fiery turmoil of the very early universe. If this idea is generally correct, then it follows that the physical processes responsible could have generated different values from the ones we observe, and might indeed have generated different values in other regions of space, or in other universes. If we could magically journey from our cosmic region to another region a trillion light-years beyond our horizon we might find that, say, the mass or charge of the electron was different. Only in those cosmic regions where the electron mass and charge have roughly the same values as they do in our region could observers emerge to discover a universe so propitiously fit for life. In this way, the intriguingly life-friendly fine-tuning of the Standard Model parameters would be neatly explained as an observer selection effect. According to the best attempts at unifying the fundamental forces of nature, such as string theory, the laws of physics as they manifest themselves in laboratory experiments are generally not the true, primary, underlying laws, but effective, or secondary laws valid at the relatively low energies and temperatures that characterize the present state of the universe compared to the ultra-hot conditions that accompanied the birth of the universe. But these same theories suggest (at least to some theorists) that there might be many different ways that the primary underlying laws might “freeze” into the effective low-energy laws, leading not merely to different relative strengths of the forces, but to different forces entirely – forces with completely different properties than those with which we are familiar. For example, there could be a strong nuclear force with 12 gluons instead of 8, there could be two flavors of electric charge and two distinct sorts of a photon, there could be additional forces above and beyond the familiar four. So the possibility arises of a domain structure in which the low-energy physics in each domain would be spectacularly different, not just in the “constants” such as masses and force strengths, but in the very mathematical form of the laws themselves. The universe on a mega-scale would resemble a cosmic United States of America, with different-shaped “states” separated by sharp boundaries. What we have hitherto taken to be universal laws of physics, such as the laws of electromagnetism, would be more akin to local by-laws, or state laws, rather than national or federal laws. And of this potpourri of cosmic regions, very few indeed would be suitable for life to local by-laws, or state laws, rather than national or federal laws. And of this potpourri of cosmic regions, very few indeed would be suitable for life.

Many Scientists Hate the Multiverse Idea 
In spite of its widespread appeal and its apparently neat solution to the Goldilocks enigma, the multiverse has some outspoken critics from both inside and outside the scientific community. There are philosophers who think that multiverse proponents have succumbed to fallacious reasoning in their use of probability theory. There are many scientists who dismiss the multiverse as speculation too far. But the most vociferous critics come from the ranks of theorists working on the most fashionable attempt to universe physics, which is known as string theory or, in its generalization version, M theory. Many string/M theorists deny the existence of a set of vastly many different worlds. They expect that future developments will expose this mind-boggling diversity as a mirage and that when physics is finally on target it will yield a unique description – a single world, our world. The argument used by anti-multiverse proponents is that the path to a theory of everything involves a progressive unification of physics, a process in which seemingly different and independent laws are found to be linked at deeper conceptual levels. As more of physics falls within the compass of unification, there are fewer free parameters to fix, and less arbitrariness in the form of the laws. It is not hard to imagine the logical extreme of this process: all of the physics amalgamated into one streamlined set of equations. Maybe if we had such a theory, we would find that there were no free parameters left at all: I shall call this the “no free parameters” theory. If that were the case, it would make no sense to consider a world in which, say, the strong force was stronger and the electron lighter, because the values of these quantities would not be independently adjustable – they would be fixed by the theory. So far, however, there is little or no evidence to support that viewpoint; it remains an act of faith – promissory triumphalism.

Who Designed the Multiverse? 
Just as one can mischievously ask who made God, or who designed the designer, so one can equally well ask why the multiverse exists and who or what designed it. Although a strong motivation for introducing the multiverse concept is to get rid of the need for design, this bid is only partially successful. Like the proverbial bump in the carpet, the popular multi-verse models merely shift the problem elsewhere – up a level from the universe to the multiverse. To appreciate this, one only has to list the many assumptions that underpin the multiverse theory. First, there has to be a universe-generating mechanism, such as eternal inflation. This mechanism is supposed to involve a natural, law-like process – in the case of eternal inflation, a quantum “nucleation” of pocket universes, to be precise. But that raises the obvious question of the source of the quantum laws (not to mention the laws of gravitation, including the causal structure of space-time on which those laws depend) that permit inflation. In the standard multiverse theory, the universe-generating laws are just accepted as given: they do not come out of the multiverse theory. Second, one has to assume that although different pocket universes have different laws, perhaps distributed randomly, nevertheless laws of some sort exist in every universe. Moreover, these laws are very specific in form: they are described by mathematical equations (as opposed to, say, ethical or aesthetic principles). Indeed, the entire subject is based on the assumption that the multiverse can be captured by (a rather restricted subset of) mathematics. Furthermore, if we accept that the multiverse is predicted by something like string/M theory, then that theory, with its specific mathematical form, also has to be accepted as given – as existing without need for explanation. One could imagine a different unified theory – N theory, say – also with a dense landscape of possibilities. There is no limit to the number of possible unified theories one could concoct: O theory, P theory, Q theory… Yet one of these is assumed to be “the right one” – without explanation. Now it may be argued that a decent Theory of Everything would spring from some deeper level of reasoning, containing natural and elegant mathematical objects which already commend themselves to pure mathematicians for their exquisite properties. It would – dare one say it? – display a sense of ingenious design. (Certainly, the theoretical physicists who construct such theories consider their work to be designed with ingenuity.) In the past, mathematical beauty and depth have been reliable guides to truth. Physicists have been drawn to elegant mathematical relationships which bind the subject together with economy and style, melding disparate qualities in subtle and harmonious ways. But this is to import a new factor into the argument – questions of aesthetics and taste. We are then on shaky ground indeed. It may be that M theory looks beautiful to its creators, but ugly to N theorists, who think that their theory is the most elegant. But then the O theorists disagree with both groups.

If There Were a Unique Final Theory, God Would Be Redundant 
Let me now turn to the main scientific alternative to the multiverse: the possible existence of a unique final theory of everything, a theory that permits only one universe. Einstein once remarked that what interested him most was whether “God had any choice in the creation of the world.” If some string theorists are right, the answer is No: the universe has to be as it is. There is only one mathematically self-consistent universe possible. And if there were no choice, then there need be no Chooser. God would have nothing to do because the universe would necessarily be as it is. Intriguing though the idea of a “no-free-parameters” theory may seem, there is a snag. If it were correct it would leave the peculiar bio-friendliness of the universe hanging as a complete coincidence. Here is a hypothetical unique theory that just happens, obligingly, to permit life and mind. How very convenient! But there is another, more direct argument against the idea of a unique final theory. The job of the theoretical physicist is to construct possible mathematical models of the world. These are often what is playfully called toy models: clearly too far removed from reality to qualify as serious descriptions of nature. Physicists construct them sometimes as a thought experiment, to test the consistency of certain mathematical techniques, but usually because the toy model accurately captures some limited aspect of the real world in spite of being hopelessly inadequate about the rest. The attraction is that such slimmed-down world models may be easy to explore mathematically, and the solutions can be a useful guide to the real world, even if the model is obviously unrealistic overall. Such toy models are a description, not of the real world but of impoverished alternatives. Nevertheless, they describe possible worlds. Anyone who wanted to argue that there can be only one truly self-consistent theory of the universe would have to give a reason why these countless mathematical models that populate the pages of theoretical physics and mathematics journals were somehow unacceptable descriptions of a logically possible world. It is not necessary to consider radically different universes to make the foregoing point. Let’s start with the universe as we know it, and change something by fiat: for example, make the electron heavier and leave everything else alone. Would this arrangement not describe a possible universe, one different from our universe, yet one that is different from our universe? “Hold on,” cries the no-free-parameters proponent, “you can’t just fix the constants of nature willy-nilly and declare that you have a theory of everything! There is much more to a theory than a dry list of numbers. There has to be a unifying mathematical framework from which these numbers emerge as only a small part of the story.” That is true. But I can always fit a finite set of parameters to a limitless number of mathematical structures, by trial and error if necessary. Of course, these mathematical structures may well be ugly and complicated, but that is an aesthetic judgment, not a logical one. So there is clearly no unique theory of everything if one is prepared to entertain other possible universes and ugly mathematics. So we are still left with the puzzle of why a theory that permits a life-giving universe is “the chosen one.” Stephen Hawking has expressed this more eloquently: “What is it that breathes fire into the equations and makes a universe for them to describe?” Who, or what does the choosing? Who, or what, promotes the “merely possible” to the “actually existing”? This question is the analog of the problem of “who made God?” or “who designed the Designer?” We still have to accept as “given”, without explanation, one particular theory, one specific mathematical description, drawn from a limitless number of possibilities. And the universes described by almost all the other theories would be barren. Perhaps there is no reason at all why “the chosen one” is chosen. Perhaps it is arbitrary. If so, we are left still with the Goldilocks puzzle. What are the chances that a randomly chosen theory of everything would describe a life-permitting universe? Negligible. If any one of these infinitely many possibilities had been the one to “have fire breathed into it” (by a Designer with poor taste perhaps?), we wouldn’t know about it because it would have gone unobserved and uncelebrated. So it remains a complete mystery as to why this universe, with life and mind, is “the one”. My conclusion is that both the multiverse theory and the putative no-free-parameters theory might go a long way to explaining the nature of the physical universe, but nevertheless, they would not, and cannot, provide a complete and final explanation of why the universe is fit for life, or why it exists at all.

What Exists and What Doesn’t: Who or What Gets to Decide? 
We have now reached the core of this entire discussion, the problem that has tantalized philosophers, theologians, and scientists for millennia: What is it that determines what exists? The physical world contains certain objects – stars, planets, atoms, living organisms, for example. Why do those things exist rather than others? Why isn’t the universe filled with, say, pulsating green jelly, or interwoven chains, or disembodied thoughts … The possibilities are limited only by our imagination. The same sort of conundrum arises when we contemplate the laws of physics. Why does gravity obey an inverse square law rather than, for example, an inverse cubed law? Why are there two varieties of electric charge (+ and −) instead of four? And so on. Invoking a multiverse merely pushes the problem back to “why that multiverse”. Resorting to a no-free-parameters single universe described by a unified theory invites the retort “Why that theory?” There are only two of what one might term “natural” states of affairs, by which I mean states of affairs that require no additional justification, no Chooser and no Designer, and are not arbitrary and reasonless. The first is that nothing exists. This state of affairs is certainly simple, and I suppose it could be described as elegant in an austere sort of way, but it is clearly wrong. We can confidently rule it out by observation. The second natural state of affairs is that everything exists. By this, I mean that everything that can exist does exist. Now that contention is much harder to knockdown. We cannot observe everything in the universe, and the absence of evidence is not the same as evidence of absence. We cannot be sure that any particular thing we might care to imagine doesn’t exist somewhere, perhaps beyond the reach of our most powerful instruments, or in some parallel universe. An enthusiastic proponent of this extravagant hypothesis is Max Tegmark. He was contemplating the “fire-breathing” conundrum I discussed above (allegedly over a few beers in a pub). “If the universe is inherently mathematical, then why was only one of the many mathematical structures singled out to describe a universe?” he wondered. “A fundamental asymmetry appears to be built into the heart of reality.” To restore the symmetry completely, and eliminate the need for a Cosmic Selector, Tegmark proposed that “every mathematical structure corresponds to a parallel universe”. So this is a multiverse with a vengeance. On top of the “standard” multiverse I have already described, consisting of other bubbles in space with other laws of physics, there would be much more: “The elements of this [extended] multiverse do not reside in the same space but exist outside of space and time. Most of them are probably devoid of observers.”

The Origin of the Rule That Separates What Exists From What Doesn’t 
Few scientists are prepared to go as far as Tegmark. When it comes to the existence business, most people think that some things got left out. But what? And why those things? If one stops short of declaring that every universe that can exist does exist, we face a puzzle. If less than everything exists, there must be a prescription that specifies how to separate “the actual” from “the possible-but-in-fact-non-existent.” The inevitable questions then arise: What is the prescription that divides them? What, exactly, determines that-which-exists and separates it from that-which-might-have-existed-but-doesn’t? From the bottomless pit of possible entities, something plucks out a subset and bestows upon its members the privilege of existing. Something “breathes fire into the equations” and makes a universe or a multiverse for them to describe. And the puzzle does not stop there. Not only do we need to identify a “fire-breathing actualizer” to promote the merely-possible to the actually- existing, we need to think about the origin of the rule itself – the rule that decides what gets fire breathed into it and what does not. Where did that rule come from? And why does that rule apply rather than some other rule? In short, how did the right stuff get selected? Are we not back with some version of a Designer/Creator/Selector entity, a necessary being who chooses “the Prescription” and “breathes fire” into it?

We here encounter an unavoidable problem that confronts all attempts to give a complete account of reality, and that is how to terminate the chain of explanation. In order to “explain” something, in the everyday sense, you have to start somewhere. To avoid an infinite regress – a bottomless tower of turtles according to the famous metaphor – you have at some point to accept something as “given”, something which other people can acknowledge as true without further justification. In proving a geometrical theorem, for example, one begins with the axioms of geometry, which are accepted as self-evidently true and are then used to deduce the theorem in a step-by-step logical argument. Sticking to the herpetological metaphor, the axioms of geometry represent a levitating super-turtle, a turtle that holds itself up without the need for additional support. The same general argument applies to the search for an ultimate explanation of physical existence. The trouble is, one man’s super-turtle is another man’s laughing stock. Scientists who crave a theory of everything with no free parameters are happy to accept the equations of that theory (e.g. M theory) as their levitating super-turtle. That is their starting point. The equations must be accepted as “given,” and used as the unexplained foundation upon which an account of all physical existence is erected. Multiverse devotees (apart perhaps from Tegmark) accept a package of marvels, including a universe-generating mechanism, quantum mechanics, relativity, and a host of other technical prerequisites as their super-turtle. Monotheistic theologians cast a necessary God in the role of super-turtle. All three camps denounce the other’s super-turtles in equally derisory measure. But there can be no reasoned resolution of this debate because at the end of the day one super-turtle or another has to be taken on faith (or at least provisionally accepted as a working hypothesis), and a decision about which one to pick will inevitably reflect the cultural prejudices of the devotee. You can’t use science to disprove the existence of a supernatural God, and you can’t use religion to disprove the existence of self-supporting physical laws. The root of the turtle trouble can be traced to the orthodox nature of the reasoned argument. The entire scientific enterprise is predicated on the assumption that there are reasons for why things are as they are. A scientific explanation of a phenomenon is a rational argument that links the phenomenon to something deeper and simpler. That in turn may be linked to something yet deeper, and so on. Following the chain of explanation back (or the turtles down), we may reach the putative final theory – the super-turtle. What then? One can ask: Why that unified theory rather than some other? One answer you may be given is that there is no reason: the unified theory must simply be treated as “the right one,” and its consistency with the existence of a moon, or of living observers, is dismissed as an inconsequential fluke. If that is so, then the unified theory – the very basis for all physical reality – itself exists for no reason at all. Anything which exists reasonlessly is by definition absurd. So we are asked to accept that the mighty edifice of scientific rationality – indeed, the very mathematical order of the universe – is ultimately rooted in absurdity! There is no reason at all for the scientific super turtle's amazing levitating power. A different response to such questions comes from the multiverse theory. Its starting point is not a single, arbitrary set of monolithic laws, with fluky, unexplained bio-friendliness, but a vast array of laws, with the life factor, accounted for by observer selection. But unless one opts for the Tegmark “anything goes” extreme, then there is still an unexplained super turtle in the guise of a particular form of multiverse based on a particular universe generating mechanism and all the other paraphernalia. So the multiverse likewise retains an element of arbitrariness and absurdity. Its super-turtle also levitates for no reason, so that theory too is ultimately absurd.

Why Mind Matters 
Let me first mention a philosophical argument for why I believe that mind does indeed occupy a deep and significant place in the universe. Later I shall give a scientific reason too. The philosophical argument concerns the fact that minds (human minds, at least) are much more than mere observers. We do more than just watch the show that nature stages. Human beings have come to understand the world, at least in part, through the processes of reasoning and science. In particular, we have developed mathematics, and by so doing have unraveled some – maybe soon, all – of the hidden cosmic code, the subtle tune to which nature dances. Nothing in the entire multiverse/anthropic argument (and certainly nothing in the unique, no-free-parameters theory) requires that level of involvement, that degree of connection. In order to explain a bio-friendly universe, the selection process that features in the Weak Anthropic principle merely requires observers to observe. It is not necessary for observers to understand. Yet humans do. Why? I am convinced that human understanding of nature through science, rational reasoning, and mathematics points to a much deeper connection between life, mind, and cosmos than emerges from the crude lottery of multiverse cosmology. In some manner that I shall endeavor to explicate shortly, life, mind, and physical law are part of a common scheme, mutually supporting.. But this seemingly unassailable conclusion conceals a weakness, albeit a subtle one. The objection that there is no room at the bottom for an additional principle rests on a specific assumption about the nature of physical laws: the assumption of Platonism. Most theoretical physicists are Platonists in the way they conceptualize the laws of physics, as precise mathematical relationships possessing a real, independent existence that nevertheless transcends the physical universe. For example, in simple, pre-multiverse cosmological models, where a single universe emerges from “nothing,” the laws of physics are envisaged as “inhabiting” the “nothingness” that preceded space and time. Heinz Pagels expressed this idea vividly: “It would seem that even the void [the state of no space and no time before the Big Bang] is subject to law, a logic that exists prior to time and space.” Likewise, string/M theory is regarded as “really existing, out there” in some transcendent Platonic realm. The universe-generating mechanism of eternal inflation exists “out there.” Quantum mechanics exists “out there.” Platonists take such things to be independently real – independent of us, independent of the universe, independent of the multiverse. But what happens if we relinquish this idealized Platonic view of the laws of physics? Many physicists who do not concern themselves with philosophical issues prefer to think of the laws of physics more pragmatically as regularities found in nature, and not as transcendent immutable truths with the power to dictate the flow of events. Perhaps the most committed anti-Platonist was Wheeler. “Mutability” was his byword. He liked to quip that, “There is no law except the law that there is no law.” Adopting the catchy aphorism “Law without law” to describe this contrarian position, Wheeler maintained that the laws of physics did not exist a priori, but emerged from the chaos of the quantum Big Bang – coming out of “higgledy-piggledy” was the way he quaintly expressed it – congealing along with the universe that they govern in the aftermath of its shadowy birth. “So far as we can see today,” he maintained, “the laws of physics cannot have existed from everlasting to everlasting. They must have come into being at the big bang.” Crucially, Wheeler did not suppose that the laws just popped up, ready-made, in their final form, but emerged in approximate form and sharpened up over time: “The laws must have come into being. Therefore they could not have been always a hundred percent accurate.” The idea that the laws of physics are not infinitely precise mathematical relationships, but come with a sort of inbuilt looseness that reduces over time, was motivated by a belief that physical existence is what Wheeler called “an information-theoretic entity”. He pointed out that everything we discover about the world ultimately boils down to bits of information. For him, the physical universe was fundamentally informational, and matter was a derived phenomenon (the reverse of the orthodox arrangement), via a transformation he called “it from bit”, where the “it” is a physical object such as an electron, and the “bit” is a unit of information. Why should “it from bit” imply “law without law”? Rolf Landauer, a physicist at IBM who helped to lay the foundations for the modern theory of computation, was able to clarify the connection. Landauer also rejected Platonism as an unjustified idealization. What bothered him was that, in the real world, all computation is subject to physical limitations. Bits of information do not float freely in the universe: they always attach to physical objects. For example, genetic information resides on the four nucleotide bases that make up your DNA. In a computer, bits of information are stored in a variety of ways, such as in magnetized domains. Clearly, one cannot have software without hardware to support it. Landauer set out to investigate the ultimate limits to the performance of a computer, the hardware of which is subject to the laws of physics and the finite resources of the universe. He concluded that idealized, perfect mathematical laws are a complete fiction as far as the real world of computation goes. The question Landauer asked is whether the mathematical idealizations embodied in Newton’s laws and the other laws of physics should really be taken seriously. As long as the laws are confined to some abstract realm of ideal mathematical forms, there is no problem. But if the laws are considered to inhabit, not a transcendent Platonic realm but the real universe, then it’s a very different story. The real universe will be subject to real restrictions. In particular, it may have finite resources: it may, for example, be able to hold only a finite number of bits at one time. If so, there will be a natural cosmic limit to the computational prowess of the universe, even in principle. Landauer’s point of view was that there is no justification for invoking mathematical operations to describe Physical laws if those operations cannot actually be carried out, even in principle, in the real universe, subject as it is to various physical limitations. In other words, laws of physics that appeal to physically impossible operations must be rejected as inapplicable. Platonic laws can perhaps be treated as useful approximations, but they are not “reality.” Their infinite precision is an idealization that is normally harmless enough, but not always. Sometimes it will lead us astray, and never more so than in discussion of the very early universe.

Quantum Mechanics Could Permit the Feedback Loop Between Mind and the Laws Of Physics 
I already mentioned a philosophical argument in favor of taking the mind seriously as a fundamental and deeply significant feature of the physical universe. So, how come existence? At the end of the day, all the approaches I have discussed are likely to prove unsatisfactory. In fact, in reviewing them they all seem to me to be either ridiculous or hopelessly inadequate: a unique universe that just happens to permit life by a fluke; a stupendous number of alternative parallel universes which exist for no reason; a preexisting God who is somehow self-explanatory; The whole paraphernalia of gods and laws, of space, time and matter, of purpose and design, rationality and absurdity, meaning and mystery, may yet be swept away and replaced by revelations as yet undreamt-of.
https://3lib.net/book/2155889/cf75bb



Last edited by Otangelo on Wed Jul 07, 2021 5:55 pm; edited 20 times in total

https://reasonandscience.catsboard.com

Otangelo


Admin

The Higgs Boson was predicted with the same tool as the planet Neptune and the radio wave: with mathematics. Galileo famously stated that our Universe is a “grand book” written in the language of mathematics. So why does our universe seem so mathematical, and what does it mean? 1

Many have wondered how mathematics, which appears to be the result of both human creativity and human discovery, can possibly exhibit the degree of success and seemingly-universal applicability to quantifying the physical world as exemplified by the laws of physics. 2

Steve C.Meyer:  The return of the God hypothesis, page 434:
When Krauss and Hawking say the laws of nature or “a law such as gravity” explains the origin of the universe, they refer to the whole mathematical superstructure of quantum cosmology, the universal wave function, the Wheeler-DeWitt equation, and current ideas about quantum gravity. They also assume that the laws of physics cause or explain specific events, including the origin of the universe.  The law of gravity does not cause material objects or space and energy to come into existence; instead, it describes how material objects interact with each other (and with space) once they already exist.  The law does not cause gravitational motion, nor does the law have the causal power to create a gravitational field, or matter or energy, or time or space. The laws of physics describe the interactions of things (matter and energy) that already exist within space and time.  The laws of physics represent only our descriptions of nature. Descriptions in themselves do not cause things to happen.

Quantum cosmology presupposes this singularity but does not provide a physical cause or explanation for the origin of ψ or the possible universes it describes that may emerge out of the singularity. Both the Wheeler-DeWitt equation and the curvature-matter pairings in superspace represent purely mathematical realities or physical possibilities. Indeed, “superspace” itself constitutes an immaterial, timeless, spaceless, and infinite realm of mathematical possibilities. Yet these mathematically possible universes (as well as the presupposed singularity, which also exists as a point in superspace) have no physical, or at least no necessary physical, existence. And even if they did exist, they would not preexist our universe (as potential causal antecedents), since both our universe and these other possible universes “reside” as possibilities in the same timeless mathematical space of possibilities, namely, superspace. Thus, the purely mathematical character of quantum cosmology—even if conceived as a proto-law of quantum gravity—renders it incapable of specifying any material antecedent as a physical cause of the origin of the universe. 

Of Math and Minds 
How, then, do Krauss and others maintain that purely mathematical entities bring a material universe into being in time and space? In other words, how can a mathematical equation create an actual physical universe? This question has troubled the leading physicists promoting quantum cosmology—at least in their more reflective moments. In A Brief History of Time, Stephen Hawking famously asked, “What is it that breathes fire into the equations and makes a universe for them to describe?”16 Though Hawking posed this question—perhaps somewhat rhetorically—he never returned to answer it. 

Alexander Vilenkin has raised the same question. He notes that, in his version of quantum cosmology, the process of “quantum tunneling” from superspace into a real universe produces space and time, matter and energy. But he acknowledges that even the process of tunneling must be governed by laws that “should be ‘there’ even prior to the universe itself.” He goes on: “Does this mean that the laws are not mere descriptions of reality and can have an independent existence of their own? In the absence of space, time, and matter, what tablets could they be written upon? The laws are expressed in the form of mathematical equations. If the medium of mathematics is the mind, does this mean that mind should predate the universe?”

Either the laws that he and Vilenkin invoke to explain the origin of space (and energy) are mathematical descriptions that exist only in the minds of physicists—in which case they have no power to generate anything in the natural world external to our minds, let alone the whole universe. Or the mathematical ideas and expressions, including those describing possible universes, exist independently of the human mind. In other words, quantum cosmology suggests either a kind of magic where human math creates a universe (clearly, not a satisfactory explanation) or mathematical Platonism.  “Platonism about mathematics (or mathematical Platonism) is the metaphysical view that there are abstract mathematical objects whose existence is independent of us and our language, thought, and practices” (Linnebo, “Platonism in the Philosophy of Mathematics”).

The Greek philosopher Plato argued that material objects such as chairs or houses or horses exemplify immaterial “forms” or ideas in a transcendent, changeless, abstract (immaterial) realm outside our universe. Similarly, mathematical Platonism asserts that mathematical concepts or ideas exist independently of the human mind. But this view in turn suggests two possibilities: mathematical ideas exist in an abstract transcendent realm of pure ideas, as Platonic philosophy suggests about the forms, or mathematical ideas reside in and issue from a transcendent intelligent mind. That then gives us a total of three distinct ways of thinking about the relationship between the mathematics of quantum cosmology and the material universe: 

(1) these mathematical expressions exist solely in the human mind and somehow produce a material universe; or 
(2) these equations represent pure mathematical ideas that exist independently of the human mind in a transcendent, immaterial realm of pure ideas; or 
(3) these equations exist in and issue from a preexisting transcendent mind.

Of those three options, I would argue, based on our uniform experience, that the third makes the most sense. Math can help us describe the universe, yet we have no experience of mathematical equations creating material reality. Material stuff can’t be conjured out of mathematical equations. In our experience math has no causal powers by itself apart from intelligent agents who use it to understand and act upon nature. To say otherwise commits a fallacy that philosophers call “reification” or the “fallacy of misplaced concreteness,” in other words, treating mathematical concepts as if they had material substance and causal efficacy. 

We do have a wealth of experience of ideas that start in the mental realm and by acts of volition and intelligent design produce entities that embody those ideas—what the thirteenth-century theologian Thomas Aquinas called “exemplar causation.”19 Therefore, it seems a reasonable extrapolation from our uniform and repeated experience of “relevantly similar entities”20 (human minds) and their causal powers to think that, if a realm of mathematical ideas and objects must preexist the universe, as quantum cosmology implies, then those ideas must have a transcendent mental source—they must reflect the contents of a preexisting mind. When Vilenkin himself tumbled to this realization, however briefly, he raised the possibility of a decidedly theistic interpretation of quantum cosmology.

 Application of Laws Of Physics 3
In the beginning, it was assumed that the earth was the centre of the universe. Then it was hypothesized that our sun is the centre of the universe. We now know that both these conclusions are wrong. The sun may be the centre of our solar system, but it is not the centre of the universe.

Another example is the odd behaviour of the planet, Mercury. Newton’s universal law of gravitation was able to explain all the other planets in the solar system but the orbit and rotational period of Mercury was a bit off, and for some time no one knew why. Later, Einstein came to the rescue with his general theory of relativity.

The different properties of laws of Physics which shed information about their nature are given below:

True, under specified conditions
Universal and do not deviate anywhere in the universe
Simple in terms of representation
Absolute and unaffected by external factors
Stable and appear to be unchanging
Omnipresent and everything in the universe is compliant (in terms of observations)
Conservative in terms of quantity
Homogeneous in terms of space and time
Theoretically reversible in time



Laws of Physics, fine-tuned for a life-permitting universe Vilenk10

1. https://www.scientificamerican.com/article/is-the-universe-made-of-math-excerpt/
2. https://arxiv.org/ftp/arxiv/papers/1504/1504.06686.pdf
3. https://byjus.com/physics/basic-laws-of-physics/



Last edited by Otangelo on Mon Jun 14, 2021 1:15 pm; edited 1 time in total

https://reasonandscience.catsboard.com

Otangelo


Admin

Are the Laws of physics only discovered and described, or also prescribed?

https://reasonandscience.catsboard.com/t1336-laws-of-physics-fine-tuned-for-a-life-permitting-universe#8600

Claim: Math is only the language used to describe the universe. The equations of physics are not the cause of the natural processes, but they are only the result of our analysis of experimental data; in other words, they are only the way we have ordered and summarized, in a mathematical language,  the observed processes. 
Reply: Luke Barnes: The Fine-Tuning of Nature’s Laws What physics tells us about the improbability of life Fall 2015
Our deepest understanding of the laws of nature is summarized in a set of equations. 5 Using these equations, we can make very precise calculations of the most elementary physical phenomena, calculations that are confirmed by experimental evidence. But to make these predictions, we have to plug in some numbers that cannot themselves be calculated but are derived from measurements of some of the most basic features of the physical universe. These numbers specify such crucial quantities as the masses of fundamental particles and the strengths of their mutual interactions. After extensive experiments under all manner of conditions, physicists have found that these numbers appear not to change in different times and places, so they are called the fundamental constants of nature.

These constants represent the edge of our knowledge. Richard Feynman called one of them — the fine-structure constant, which characterizes the amount of electromagnetic force between charged elementary particles like electrons — “one of the greatest damn mysteries of physics: a magic number that comes to us with no understanding by man.”

Since physicists have not discovered a deep underlying reason for why these constants are what they are, we might well ask the seemingly simple question: What if they were different? What would happen in a hypothetical universe in which the fundamental constants of nature had other values? There is nothing mathematically wrong with these hypothetical universes. But there is one thing that they almost always lack — life. Or, indeed, anything remotely resembling life. A universe that has just small tweaks in the fundamental constants might not have any of the chemical bonds that give us molecules, so say farewell to DNA, and also to rocks, water, and planets. Other tweaks could make the formation of stars or even atoms impossible. And with some values for the physical constants, the universe would have flickered out of existence in a fraction of a second. That the constants are all arranged in what is, mathematically speaking, the very improbable combination that makes our grand, complex, life-bearing universe possible is what physicists mean when they talk about the “fine-tuning” of the universe for life.

The results of all our investigations into the fundamental building blocks of matter and energy are summarized in the Standard Model of particle physics, which is essentially one long, imposing equation. Within this equation, there are twenty-six constants, describing the masses of the fifteen fundamental particles, along with values needed for calculating the forces between them, and a few others. We have measured the mass of an electron to be about 9.1 x 10-28 grams, which is really very small — if each electron in an apple weighed as much as a grain of sand, the apple would weigh more than Mount Everest. The other two fundamental constituents of atoms, the up and down quarks, are a bit bigger, coming in at 4.1 x 10-27 and 8.6 x 10-27 grams, respectively. These numbers, relative to each other and to the other constants of the Standard Model, are a mystery to physics. Like the fine-structure constant, we don’t know why they are what they are.

However, we can calculate all the ways the universe could be disastrously ill-suited for life if the masses of these particles were different. For example, if the down quark’s mass were 2.6 x 10-26 grams or more, then adios, periodic table! There would be just one chemical element and no chemical compounds, in stark contrast to the approximately 60 million known chemical compounds in our universe.

With even smaller adjustments to these masses, we can make universes in which the only stable element is hydrogen-like. Once again, kiss your chemistry textbook goodbye, as we would be left with one type of atom and one chemical reaction. If the up quark weighed 2.4 x 10-26 grams, things would be even worse — a universe of only neutrons, with no elements, no atoms, and no chemistry whatsoever.

The universe we happen to have is so surprising under the Standard Model because the fundamental particles of which atoms are composed are, in the words of cosmologist Leonard Susskind, “absurdly light.” Compared to the range of possible masses that the particles described by the Standard Model could have, the range that avoids these kinds of complexity-obliterating disasters is extremely small. Imagine a huge chalkboard, with each point on the board representing a possible value for the up and down quark masses. If we wanted to color the parts of the board that support the chemistry that underpins life, and have our handiwork visible to the human eye, the chalkboard would have to be about ten light-years (a hundred trillion kilometers) high.

And that’s just for the masses of some of the fundamental particles. There are also the fundamental forces that account for the interactions between the particles. The strong nuclear force, for example, is the glue that holds protons and neutrons together in the nuclei of atoms. If, in a hypothetical universe, it is too weak, then nuclei are not stable and the periodic table disappears again. If it is too strong, then the intense heat of the early universe could convert all hydrogen into helium — meaning that there could be no water, and that 99.97 percent of the 24 million carbon compounds we have discovered would be impossible, too. And, as the chart to the right shows, the forces, like the masses, must be in the right balance. If the electromagnetic force, which is responsible for the attraction and repulsion of charged particles, is too strong or too weak compared to the strong nuclear force, anything from stars to chemical compounds would be impossible.

Laws of Physics, fine-tuned for a life-permitting universe 20160107_TNA47BarneschartforWeb
What if we tweaked just two of the fundamental constants? This figure shows what the universe would look like if the strength of the strong nuclear force (which holds atoms together) and the value of the fine-structure constant (which represents the strength of the electromagnetic force between elementary particles) were higher or lower than they are in this universe. The small, white sliver represents where life can use all the complexity of chemistry and the energy of stars. Within that region, the small “x” marks the spot where those constants are set in our own universe.

The numbers that characterize our universe as a whole similarly seem to be finely tuned. In 1998, astronomers discovered that there is a form of energy in our cosmos with the unusual property of “negative pressure” that operates something like a repulsive form of gravity, causing the universe’s expansion to accelerate. In the set of possible values for this “dark energy,” the vast majority either cause the universe to expand so rapidly that no structure could ever form, or else cause the universe to collapse back in on itself mere moments after coming into being.

Beyond the Constants
The lack of an explanation for the fundamental constants in the Standard Model suggests that there is still work to be done. Particle physicist David Gross is fond of quoting Winston Churchill to his fellow scientists when it comes to explaining the seemingly arbitrary constants of nature in the Standard Model: “never, never, never give up!”

Perhaps someday, if the Standard Model is supplanted by a superior theory, physicists will not have to wonder about these constants because they will have been replaced by mathematical formulas derived from a deep law of nature. If — or when — physicists can confidently say why the constants of nature could not have been different, then it would no longer make any sense to speak of the consequences of changing their values, and so fine-tuning would be much less mysterious.

Then again, even a theory-free of arbitrary constants would not necessarily explain why the universe gives rise to living beings like us. If these hoped-for deeper equations are anything like all the equations of physics thus far, then they, too, will still require initial conditions. The laws specify how the stuff of the universe behaves in a given scenario; they do not specify the scenario.

More fundamentally, the most that follows from a constant-free theory is this: if you want to consider different universes, you will need to consider different laws, not just different constants in the same laws. So, rather than talking about the fine-tuning of the constants, we would consider the fine-tuning of the symmetries and abstract principles. Could it be just a lucky coincidence that they produce in our universe the properties and interactions required by complex structures such as life? This notion “really strains credulity,” according to Frank Wilczek, who shared the 2004 Nobel Prize in Physics with David Gross. And as Bernard Carr and Martin Rees wrote in the conclusion of an influential early paper on the fine-tuning problem, “it would still be remarkable that the relationships dictated by physical theory happened also to be those propitious for life.”

Other Universes?
Another approach to the fine-tuning problem comes from the discipline of cosmology, the study of the origins and structure of the universe. Some of the most important early modern science was cosmology, namely the work of Copernicus, Kepler, and Galileo to discover the structure of the solar system. In 1596, Kepler presented a beautiful mathematical theory to explain some important cosmic numbers: the distances to the six (known) planets. In his model, the planets were carried around on a set of nested celestial spheres, centered on the sun. Inside each sphere was one of the five Platonic solids — octahedron, icosahedron, dodecahedron, tetrahedron, and cube. Properly arranged, these six spheres separated by the five Platonic solids correctly spaced the planets, as far as anyone in the late sixteenth century could tell, and what’s more, it explained why there were only six planets. Alas, this beautiful hypothesis was slain by ugly facts: there are more than six planets in the solar system, and, in any case, the planets do not follow the circular orbits described by Kepler. This model was too simple, too idealized; the real solar system is molded in part by accident and contingency, having formed from a collapsing, turbulent disk of gas and dust surrounding the young sun. Facts about our solar system such as the distances between our sun and our planets, and the shape of their orbits, are local variables, not deep truths written into the laws of nature. They could have been different; in the thousands of other planetary systems we have observed in recent decades they are different.

So what if looking for the golden formula for such features of our universe as the fine-structure constant is as doomed as Kepler’s Platonic solar system? What if this “constant” is actually just a local, environmental variable, not something immutably written into the laws of nature? We have probed the fundamental constants using observations of the distant universe and found them unchanged. But of course we can only see so far, and in so much detail, with our telescopes. Wouldn’t it be surprising if none of our two dozen constants turned out to be variables?

Consider what this means for the fine-tuning question. If the “constants” actually vary from place to place and from time to time, then the right combination of constants for life is bound to turn up somewhere. And, of course, life can only exist in life-permitting regions. This kind of explanation has a parallel in the solar system: why does the Earth, the planet we live on, orbit the Sun within the narrow strip that allows its temperature to remain mostly around that needed for liquid water? Because there are plenty of planets and stars out there, and it is far more likely that living things would have evolved to ask these questions on planets with liquid water.

Other planets are one thing; other universes are quite another. Some of our theories of the very earliest states of our cosmos may imply that we live in a large, variegated “multiverse.” Further, some theories that extend the Standard Model show how the constants could be shuffled in the early universe. But the physics of the multiverse hypothesis is speculative, as is its extrapolation to the universe as a whole. And there is no hope of direct observations to verify these ideas and help turn them into mature scientific theories.

That said, particular multiverse hypotheses can be tested, at least to some extent. Consider this example as an analogy: Alice predicts that a certain factory will make ninety-nine red widgets and one blue widget. Bob predicts the reverse: ninety-nine blue and one red. A single packet arrives from the factory and they open it to find a red widget. While neither theory is decisively confirmed or refuted, the evidence clearly favors Alice. Now compare two multiverse theories: the first predicts that, out of a hundred universes that contain life, ninety-nine would also contain dark energy, while the second predicts that only one of the one hundred will contain dark energy. Our observation that our own universe contains dark energy favors the first theory. Though the only universe we can observe is a livable one, we can still test multiverse theories by asking whether our universe is typical of the life-permitting universes in the theory.

Is this science? On the one hand, multiverse hypotheses are physical theories that make predictions about our universe, namely, about the constants of nature. These constants are exactly where our current theories run out of ideas, so coming up with a theory that would predict them, even as a statistical ensemble, would be an impressive achievement. On the other hand, the main selling point for multiverse theory — all those other universes with different fundamental constants — will forever remain beyond observational confirmation. And even if we postulate a multiverse, we would still need a more fundamental theory to explain how all these universes are generated, which could raise all the same kinds of fine-tuning problems.

Statistics and Specialness
The apparent fine-tuning of the universe for life raises also a host of interesting philosophical issues. In other scientific fields, we can usually obtain more evidence — just run the experiment again, or keep looking for phenomena the theory predicts. But in cosmology, our telescopes can only see so far. Maybe desperate scientific questions call for desperate scientific measures.

In the last few decades, developments in the mathematical study of probability have given scientists new tools for testing physical theories. The older views of probability relied on what is called “frequentist” statistics. Under this orthodox view of statistics, the word “probability” means something like the actual frequency of an event in an experiment; saying that the probability that a coin will land on heads is 50 percent just means that if you flipped the coin 100 times, the frequency of heads would be about 50. The newer view of probability is called Bayesianism, for Thomas Bayes, the eighteenth-century theologian and mathematician whose long-neglected work forms the basis for Bayesian probability. Instead of looking at probability as the frequency of events in an experiment, Bayesians see probability in terms of degrees of plausibility. With Bayesian probability, we can compare how likely different theories are in the light of available evidence.

With the Bayesian toolbox in hand, we need not insist on a strict dividing line between responsible extrapolation and reckless speculation. If “successful” multiverse theories — those that correctly predict our fundamental constants — are a dime a dozen, then none will be particularly likely in light of our available evidence. Think of a detective investigating a dead body, a spotless crime scene, and a room full of suspects; without further evidence, the case will remain unsolved. Alternatively, if fundamental theories of space, time, and matter provide a mechanism for generating a variegated ensemble of universes that is simple and well-grounded in known physics, then the multiverse may find a place in science as a reasonable extrapolation of a well-tested theory. Or, just as importantly, it may be discarded, not as an untested speculation but as a scientific failure. Currently, no multiverse theory can claim to be tested to this extent.

Moreover, nothing in the Bayesian approach limits its application to propositions about the physical world. Probabilities are degrees of plausibility, and can in principle be applied wherever human curiosity leads. Even if precise calculations of numerical values are impossible, we can ask the right questions.

In thinking about these problems, our approach to probability matters. The fine-tuning of the universe for life invites us to imagine that our fortuitous cosmic environment is improbable. A random spin of the cosmic dials, it seems, would almost certainly result in a universe unable to create and sustain the complexity required by life. But if probabilities must be dictated by physical theories and are about physical events, as the frequentist believes, then we cannot say that our constants are improbable. We have no physical theory that stands above the constants, informing us that they are unlikely.

However, within the Bayesian approach, probabilities are not confined within physical theories. We can state that, for example, naturalism — the idea that physical things are all that fundamentally exist — gives us no reason to expect that any particular universe or set of laws or constants is more likely than any other, because there are no true facts about the universe that stand above the ultimate laws of nature. According to naturalism, there is no explanation of why this rather than some other final law, why any law at all, why a mathematical law; no explanation, to borrow the words of Stephen Hawking, of what “breathes fire into the equations and makes a universe for them to describe.” Like the uninformed detective in a large room of suspects, the probability of naturalism is at the mercy of every possible way that concrete reality could be.

So, what if one day the Ultimate Law of Nature is laid out before us, like a completed crossword puzzle? Whatever we think about that law will have to be deeper than physics, so to speak. We will be thinking about science — that is, we will be doing philosophy. Even if the only fact about what is beyond physics is that “there is nothing beyond physics,” we must remember that this is a statement about physics, not of physics.

Naturalism is not the only game in town when it comes to explaining why some law of nature might be the ultimate one. Its competitors include axiarchism, the view that moral value, such as the goodness of embodied, free, conscious moral agents like us, can explain the existence of one kind of universe rather than another; or, in the words of John Leslie, the theory’s chief proponent, it is “the theory that the world exists because it should.” Theism is another alternative, according to which God designed the universe and its fundamental laws and constants. These two views can trim the list of candidate explanations of the fundamental laws of nature, heavily favoring those possible universes that permit the existence of valuable life forms like us. By suggesting that fundamental physical principles are calibrated to make the existence of beings like us possible, investigations into fine-tuning seem to lend support to these kinds of theories. A full appraisal of their merits would also need to consider their relative simplicity, and other aspects of human existence, such as goodness, beauty, and suffering.

Are we special? This is not the kind of question that science usually asks, and for good reason — we don’t have a specialometer. And yet, certain observations do hold a special place in science. The faint static detected in 1964 by the antenna of Arno Penzias and Robert Wilson seemed unremarkable; all scientific instruments are plagued by noise. Only when this experiment came to the attention of Robert Dicke and his colleagues at Princeton University was it realized that they had discovered the cosmic microwave background, a relic of the early universe.

Facts can be special to a theory. That is, they can be special because of what we can infer from them. Fine-tuning shows that life could be extraordinarily special in this sense. Our universe’s ability to create and sustain life is rare indeed; a highly explainable but as yet unexplained fact. It could point the way to deeper physics, or beyond this universe, or even to principles beyond the ultimate laws of nature.

Stars are particularly finicky when it comes to fundamental constants. If the masses of the fundamental particles are not extremely small, then stars burn out very quickly. Stars in our universe also have the remarkable ability to produce both carbon and oxygen, two of the most important elements to biology. But, a change of just a few percent in the up and down quarks’ masses, or in the forces that hold atoms together, is enough to upset this ability — stars would make either carbon or oxygen, but not both.

Marco Biagini Ph.D. in Solid State Physics; 3
Natural phenomena occur according to some specific mathematical equations. If the laws of physics are just described, but not prescribed, every new experimental data would require new analysis and a revision of our equations. Such objection is then clearly denied by the predictive capability of the equations of physics.

In a non-mathematically structured universe we should have the following situation: Through the analysis of experimental data, we could find a mathematical function or equation to represent such data. However, every new experiment would give us some new data which do not fit our equations, so that we should revise our equations.  There is no reason to expect that a new experiment should give data compatible with our equations; in fact, in principle, the possible outcome for our data are infinite numerical values, so the probability to find the predicted values is zero (the probability is calculated as the quotient of the favorable outcomes and the possible outcomes, and since the possible outcomes are infinite, this quotient is zero). We have found however the opposite situation, i.e. the systematic confirmation of the predictions of the equations of physics.

Consider that the equations of quantum mechanics have been discovered last century, through the analysis of some simple atoms; these equations have then correctly predicted the behavior of billions of other molecules and systems, and no revisions of the equations have been necessary.

Scientific data has systematically confirmed the laws of physics. It is then correct to say that the probability that the universe is not intrinsically ruled through mathematical equations is zero.

Some consider the equations of physics as a description of the universe like a map is a description of a territory.
Also this kind of argument fails if we consider the predictive power of the laws of physics: the map in fact cannot predict the changes occurring in a territory since the map is only a graphic description of the surveys made till now. The map can give us no new information beyond those used by the person who made the map itself; on the contrary, the laws of physics can give us new information about experiments that have not been made yet. The map must be revised at every change that occurred in the territory, and this is what should happen if the laws of physics were a sort of map of the universe, built upon our experimental data. Every new experiment would change our set of data, and a revision of our equations would become necessary.

Somebody claims that the universe is ruled by chance, because of the collapse of the wave function in quantum mechanics.
This is clearly false. In fact, for every experiment, infinite possible probability distributions exist, and matter systematically follows the probability distribution predicted by the equations of physics.
It is not possible to account for the extraordinary agreement between the experimental data and the laws of physics and the predictive power of such laws, without admitting that the state of the universe must necessarily be determined by some specific mathematical equations. The existence of these mathematical equations implies the existence of a personal, conscious and intelligent Creator. Atheism is incompatible with the view of the universe, presented by modern science, since the intrinsic abstract and conceptual nature of the laws ruling the universe, implies the existence of a personal God.

The state of the universe is determined by some specific mathematical equations, the laws of physics; the universe cannot exist independently from such equations, which determine the events and the properties of such events (including the probability for the event to occur, according to the predictions of quantum mechanics)

A mathematical equation cannot exist by itself, but it exists only as a thought in a conscious and intelligent mind. In fact, a mathematical equation is only an abstract concept, which existence presupposes the existence of a person conceiving such a concept. Therefore, the existence of this mathematically structured universe does imply the existence of a personal God; this universe cannot exist by itself, but it can exist only if there is a conscious and intelligent God conceiving it according to some specific mathematical equations.

Someone claims that the present laws of physics cannot be considered exact because we do not have a unique theory unifying general relativity with electroweak and strong interactions. First of all, it must be stressed that it is not necessary at all that such theory must exist; God could have conceived the universe both according to a unified theory and according to some disjointed theories. Anyway, a well-known property of mathematical equations is the possibility to find approximate equations able to reproduce with great accuracy the results of the exact equation in a given range of values. This is the reason why classical mechanics (which represents the approximation) can replace quantum mechanics (which represents the exact theory) in the study of many macroscopic processes. So, independently from the fact that we choose to consider the present laws of physics as exact or approximate, the systematic accuracy of their predictions proves that the state of the universe is determined by specific mathematical equations. In fact, if natural processes were not determined by any mathematical equations, there would be no reason to expect to be able to predict the natural processes (neither a limited number of them), through some mathematical equations.
https://www.thenewatlantis.com/publications/the-fine-tuning-of-natures-laws



1. https://www.haydenplanetarium.org/tyson/essays/2000-11-on-earth-as-in-the-heavens.php
2. https://theconversation.com/can-the-laws-of-physics-disprove-god-146638
3. http://xoomer.alice.it/fedeescienza/englishnf.html
4. https://thewire.in/science/is-the-universe-as-we-know-it-stable



Last edited by Otangelo on Wed Dec 22, 2021 8:35 am; edited 3 times in total

https://reasonandscience.catsboard.com

Otangelo


Admin

Why are the laws of physics, and the values of constants, permitting a life-hosting universe, the way they are?

https://reasonandscience.catsboard.com/t1336-laws-of-physics-where-did-they-come-from#8604

The laws of physics have been imprinted on the universe at the moment of creation, i.e. at the big bang, and have since remained fixed in both space and time. The universe was born with the values of constants, laid down once and for all, from the outset. These are physical quantities that are both universal in nature and have a constant value in time. The existence of these laws of nature is the starting point of science. 
There is the mathematical form of the laws of physics,  causal relationships fundamental to reality, and there are various “constants” that come into the equations. Newton’s inverse square law of gravitation is an example. The mathematical form relates the gravitational force between two bodies to the distance between them. But Newton’s gravitational constant G also comes into the equation: it sets the actual strength of the force.
Why does gravity obey an inverse square law rather than, for example, an inverse cubed law? Why are there two varieties of electric charge (+ and −) instead of four?
The form of the law can be different. The Standard Model of particle physics has twenty-odd undetermined parameters. These are key numbers such as particle masses and force strengths that cannot be predicted by the Standard Model itself but must be measured by experiment and inserted into the theory by hand. Why are these key numbers selected to permit a life-hosting universe?
There is no reason why the measured values of these parameters should/could be explained by a deeper unified theory that goes beyond the Standard Model. They are genuinely free parameters that are not determined by any deeper level laws.  the numbers are not fixed but could take on different values without conflicting with any physical laws. By tradition, physicists refer to these parameters as “constants of nature” because they seem to be the same throughout the observed universe. However, we have no idea why they are constant. Since they can take on different values, then the question arises of what determines the values they possess?
The mass or charge of the electron could be different. The electron mass and charge permit our universe propitiously fit for life.
There could be a strong nuclear force with 12 gluons instead of 8, there could be two flavors of electric charge and two distinct sorts of a photon, there could be additional forces above and beyond the familiar four. So the possibility arises of a domain structure in which the low-energy physics in each domain would be spectacularly different, not just in the “constants” such as masses and force strengths, but in the very mathematical form of the laws themselves.

Paraphrasing Hoyle: Why does it appear that a super-intellect had been “monkeying” with the laws of physics?
Why are the Standard Model parameters intriguingly finely tuned to be life-friendly?
Why does the universe look as if it has been designed by an intelligent creator expressly for the purpose of spawning sentient beings?
Why is the universe “just right” for life, in many intriguing ways?
How can we account for this appearance of judicious design?  
Why does beneath the surface complexity of nature lie a hidden subtext, written in a subtle mathematical code, the cosmic code which contains the rules on which the universe runs?
Why lies beneath the surface hubbub of natural phenomena an abstract order, an order that cannot be seen or heard or felt, but only deduced?
Why are the diverse physical systems making up the cosmos linked, deep down, by a network of coded mathematical relationships?
Why is the physical universe neither arbitrary nor absurd?
Why is not just a meaningless jumble of objects and phenomena haphazardly juxtaposed, but rather, there is a coherent scheme of things?
Why is there order in nature?
This is a profound enigma: Where do the laws of nature come from? Why do they have the form that they do?
And why are we capable of comprehending it?
So far as we can see today, the laws of physics cannot have existed from everlasting to everlasting. They must have come into being at the big bang. The laws must have come into being.
As the great cosmic drama unfolds before us, it begins to look as though there is a “script” – a scheme of things. We are then bound to ask, who or what wrote the script?
If these laws are not the product of divine providence, how can they be explained?
If the universe is absurd, the product of unguided events, why does it so convincingly mimic one that seems to have meaning and purpose?
Did the script somehow, miraculously, write itself?
Why do the laws of nature possess a mathematical basis?
Why should the laws that govern the heavens and on Earth not be the mathematical manifestations of God’s ingenious handiwork?
Why is a transcendent immutable eternal creator with the power to dictate the flow of events not the most case-adequate explanation?
The universe displays an abstract order, conditions that are regulated, it looks like a put-up job, a fix. There is a mathematical subtext, then does it not point to a creator?  
The laws are real things –  abstract relationships between physical entities. They are relationships that really exist. Why is nature shadowed by this mathematical reality?
Why should we attribute and explain the cosmic “coincidences” to chance?
There is no logical reason why nature should have a mathematical subtext in the first place.
In order to “explain” something, in the everyday sense, you have to start somewhere. How can we terminate the chain of explanation, if not with an eternal creator?
To avoid an infinite regress – a bottomless tower of turtles according to the famous metaphor – you have at some point to accept something as “given”, something which other people can acknowledge as true without further justification.
If a cosmic selector is denied, then the equations must be accepted as “given,” and used as the unexplained foundation upon which an account of all physical existence is erected.
Everything we discover about the world ultimately boils down to bits of information. The physical universe was fundamentally based on instructional informational, and matter is a derived phenomenon
What, exactly, determines that-which-exists and separates it from that-which-might-have-existed-but-doesn’t?
From the bottomless pit of possible entities, something plucks out a subset and bestows upon its members the privilege of existing. What “breathes fire into the equations” and makes a life-permitting universe?
Not only do we need to identify a “fire-breathing actualizer” to promote the merely-possible to the actually- existing, we need to think about the origin of the rule itself – the rule that decides what gets fire breathed into it and what does not.  Where did that rule come from?
And why does that rule apply rather than some other rule? In short, how did the right stuff get selected? Are we not back with some version of a Designer/Creator/Selector entity, a necessary being who chooses “the Prescription” and “breathes fire” into it?
Certain stringent conditions must be satisfied in the underlying laws of physics that regulate the universe. That raises the question: Why does our bio-friendly universe look like a fix – or “a put-up job”?  
Stephen Hawking: “What is it that breathes fire into the equations and makes a universe for them to describe?” Who, or what does the choosing? Who, or what promotes the “merely possible” to the “actually existing”?

What are the chances that a randomly chosen theory of everything would describe a life-permitting universe? Negligible.
If the universe is inherently mathematical, composed of a mathematical structure then does it not require a Cosmic Selector? 
What is it then that determines what exists? The physical world contains certain objects – stars, planets, atoms, living organisms, for example. Why do those things exist rather than others?
Why isn’t the universe filled with, say, pulsating green jelly, or interwoven chains, or disembodied thoughts … The possibilities are limited only by our imagination.

Why not stick to the view and favor the mind of a creator seriously as a fundamental and deeply significant feature of the physical universe. ?  A preexisting God who is somehow self-explanatory?
Galileo, Newton and their contemporaries regarded the laws as thoughts in the mind of God, and their elegant mathematical form as a manifestation of God’s rational plan for the universe.
Newton, Galileo, and other early scientists treated their investigations as a religious quest. They thought that by exposing the patterns woven into the processes of nature they truly were glimpsing the mind of God.
“The great book of nature,” Galileo wrote, “can be read-only by those who know the language in which it was written. And this language is mathematics.”
James Jeans: “The universe appears to have been designed by a pure mathematician.”

https://reasonandscience.catsboard.com

Otangelo


Admin

The rules that govern the universe: Where did they come from?

https://reasonandscience.catsboard.com/t1336-laws-of-physics-fine-tuned-for-a-life-permitting-universe#9024

When we invent a game or a program, we can implement an infinite number of rules or ways how the program executes its operations. These rules are grounded in our will to achieve a certain way of how the game or program is being played or run.

If we compare the universe to a computer,  there’s a specifically selected program and specific rules or patterns that our physical universe follows and obeys to. It is easy to imagine a universe in which conditions change unpredictably from instant to instant or even a universe in which things pop in and out of existence.
These rules or laws of physics are arbitrary. If follows that these rules have to be explained from the outside.

That includes the speed of light, Planck's constant, electric charge, thermodynamics, and atomic theory. These rules can be described through mathematics. The universe cannot operate without these rules in place. There is no deeper reason or why these rules exist, rather than not. These rules are not grounded in anything else.

The universe operates with clockwork precision, is orderly, and is stable for unimaginable periods of time. This is the normal state of affairs, but there is no reason why this should be the norm and not the exception.There is no reason, why we won't wake up in the morning, to find heat flowing from cold to hot, or the speed of light changing by the hour.

The fact that the universe had a beginning, and its expansion rate was finely adjusted on a razor's edge, not too fast, not too slow, to permit the formation of matter, is by no means to be taken as a granted, natural, or self-evident. It's not. It's extraordinary to the extreme.

In order to have solid matter, electrons that surround the atomic nucleus need to have precise mass. They constantly jiggle, and if the mass would not be right, that jiggling would be too strong, and there would never be any solids, and we would not be here.

The masses of the subatomic particles to have stable atoms must be just right, and so the fundamental forces, and dozens of other parameters and criteria. They have to mesh like a clock - or even a watch, governed by the laws, principles, and relationships of quantum mechanics, all of which had to come from somewhere or from someone or from something.

The proton-electron mass ratio is the same in a galaxy six billion light-years away as it is here on Earth. If it were not so, the electric charge between protons and electrons would not cancel out, and there would be no stable atoms, and no chemistry, and no life.

If we had a life-permitting universe, with all laws and fine-tune parameters in place, but not Bohr's rule of quantization and the Pauli Exclusion Principle in operation, no stable atoms, no life.

Paulis Exclusion Principle dictates that not more than two electrons can occupy exactly the same 'orbit' and then only if they have differing quantum values, like spin-up and spin-down. This prevents all electrons from being together like people crowded in a subway train at rush hour. All electrons would occupy the lowest atomic orbital. Thus, without this principle, no complex life would be possible.

Bohr’s rule of quantization requires that electrons occupy only fixed orbitals (energy levels) in atoms. If we view the atom from the perspective of classical Newtonian mechanics, an electron should be able to go in any orbit around the nucleus. That can be in this level or that level or the next level but not at in-between levels. This prevents electrons from spiraling down and impacting the positively charged nucleus which, being negatively charged, electrons would otherwise want to do. Design and fine-tuning by any other name still appear to be design and fine-tuning. Thus, without the existence of this rule of quantization – atoms could not exist, and hence there would be no life.

When confronting atheists with these facts, a common answer is: These laws are just what they are. That is unsatisfying. Why should the level of human intelligence have a singular position on an absolute scale ? If there are different levels of intelligence amongst humans, and between animals and humans, why can, or should there be no higher intelligence, or an all-powerful God, capable of creating the physical world, and instantiating the laws that science has discovered?

Max Tegmark tries to give an explanation, by claiming that ‘the world/universe is mathematical’.  That is nothing but a category mistake. The universe is physical, 3 dimensional, made of matter, space, and time, and operates based on mathematical rules, which are non-physical. The best explanation is that these rules started in the mind of God, and were implemented when God created the universe.

Science is a tool to bring man closer to God - when he is willing to be open-minded, unbiased, and permitting the evidence to lead wherever it is.

Do you permit it?

Laws of Physics, fine-tuned for a life-permitting universe Main-q10

https://reasonandscience.catsboard.com

Otangelo


Admin

Blueprint for a Habitable Universe - Mathematics and the Deep Structure of the Universe 1

Johannes Kepler, Defundamentis Astrologiae Certioribus, Thesis XX (1601)
"The chief aim of all investigations of the external world should be to discover the rational order and harmony which has been imposed on it by God and which He revealed to us in the language of mathematics."

Table 1. The Fundamental Laws of Nature.
Laws of Physics, fine-tuned for a life-permitting universe AOdgEDa
Yet even the splendid orderliness of the cosmos, expressible in the mathematical forms seen in Table 1, is only a small first step in creating a universe with a suitable place for habitation by complex, conscious life. The particulars of the mathematical forms themselves are also critical. Consider the problem of stability at the atomic and cosmic levels. Both Hamilton's equations for non-relativistic, Newtonian mechanics and Einstein's theory of general relativity (see Table 1) are unstable for a sun with planets unless the gravitational potential energy is proportional to r-1, a requirement that is only met for a universe with three spatial dimensions. For Schrödinger's equations for quantum mechanics to give stable, bound energy levels for atomic hydrogen (and by implication, for all atoms), the universe must have no more than three spatial dimensions. Maxwell's equations for electromagnetic energy transmission also require that the universe be no more than three-dimensional.


Richard Courant illustrates this felicitous meeting of natural laws with the example of sound and light: "[O]ur actual physical world, in which acoustic or electromagnetic signals are the basis of communication, seems to be singled out among the mathematically conceivable models by intrinsic simplicity and harmony."{8}


To summarize, for life to exist, we need an orderly (and by implication, intelligible) universe. Order at many different levels is required. For instance, to have planets that circle their stars, we need Newtonian mechanics operating in a three-dimensional universe. For there to be multiple stable elements of the periodic table to provide a sufficient variety of atomic "building blocks" for life, we need atomic structure to be constrained by the laws of quantum mechanics. We further need the orderliness in chemical reactions that is the consequence of Boltzmann's equation for the second law of thermodynamics. And for an energy source like the sun to transfer its life-giving energy to a habitat like Earth, we require the laws of electromagnetic radiation that Maxwell described.


Our universe is indeed orderly, and in precisely the way necessary for it to serve as a suitable habitat for life. The wonderful internal ordering of the cosmos is matched only by its extraordinary economy. Each one of the fundamental laws of nature is essential to life itself. A universe lacking any of the laws shown in Table 1 would almost certainly be a universe without life. Many modern scientists, like the mathematicians centuries before them, have been awestruck by the evidence for intelligent design implicit in nature's mathematical harmony and the internal consistency of the laws of nature. Australian astrophysicist Paul Davies declares:
All the evidence so far indicates that many complex structures depend most delicately on the existing form of these laws. It is tempting to believe, therefore, that a complex universe will emerge only if the laws of physics are very close to what they are....The laws, which enable the universe to come into being spontaneously, seem themselves to be the product of exceedingly ingenious design. If physics is the product of design, the universe must have a purpose, and the evidence of modern physics suggests strongly to me that the purpose includes us.{9}
British astronomer Sir Fred Hoyle likewise comments,
I do not believe that any scientist who examines the evidence would fail to draw the inference that the laws of nuclear physics have been deliberately designed with regard to the consequences they produce inside stars. If this is so, then my apparently random quirks have become part of a deep-laid scheme. If not then we are back again at a monstrous sequence of accidents.{10}
Nobel laureates Eugene Wigner and Albert Einstein have respectfully evoked "mystery" or "eternal mystery" in their meditations upon the brilliant mathematical encoding of nature's deep structures. But as Kepler, Newton, Galileo, Copernicus, Davies, and Hoyle and many others have noted, the mysterious coherency of the mathematical forms underlying the cosmos is solved if we recognize these forms to be the creative intentionality of an intelligent creator who has purposefully designed our cosmos as an ideal habitat for us.

Blueprint for a Habitable Universe: Universal Constants - Cosmic Coincidences?

Next, let us turn to the deepest level of cosmic harmony and coherence - that of the elemental forces and universal constants which govern all of nature. Much of the essential design of our universe is embodied in the scaling of the various forces, such as gravity and electromagnetism, and the sizing of the rest mass of the various elemental particles such as electrons, protons, and neutrons.
There are certain universal constants that are indispensable for our mathematical description of the universe (see Table 2). These include Planck's constant, h; the speed of light, c; the gravity-force constant, G; the rest masses of the proton, electron, and neutron; the unit charge for the electron or proton; the weak force, strong nuclear force, electromagnetic coupling constants; and Boltzmann's constant, k.


Table 2. Universal Constants.









  • Speed of light

c = 3.0 x 108 m/s
  • Planck's constant

h = 6.63 x 10-34 J-s
  • Boltzmann's constant    

k = 1.38 x 10-23 J / oK
  • Unit charge

q = 1.6 x 10-19 Coulombs
  • Rest mass proton

mp = 1.67 x 10-27 kg
  • Rest mass of neutron

mn = 1.69 x 10-27 kg
  • Rest mass of electron

me = 9.11 x 10-31 kg
  • gravity force constant

G = 6.67 x 10-11 N-m2/ kg2
When cosmological models were first developed in the mid-twentieth century, cosmologists naively assumed that the selection of a given set of constants was not critical to the formation of a suitable habitat for life. Through subsequent parametric studies that varied those constants, scientists now know that relatively small changes in any of the constants produce a dramatically different universe and one that is not hospitable to life of any imaginable type.
The "just so" nature of the universe has fascinated both scientists and laypersons, giving rise to a flood of titles such as The Anthropic Cosmological Principle,{11} Universes,{12} The Accidental Universe,{13} Superforce,{14} The Cosmic Blueprint,{15} Cosmic Coincidences,{16} The Anthropic Principle,{17} Universal Constants in Physics,{18} The Creation Hypothesis,{19} and Mere Creation: Science, Faith and Intelligent Design.{20} Let us examine several examples from a longer list of approximately one hundred requirements that constrain the selection of the universal constants to a remarkable degree.
Twentieth-century physicists have identified four fundamental forces in nature. These may each be expressed as dimensionless numbers to allow a comparison of their relative strengths. These values vary by a factor of 1041 (10 with forty additional zeros after it), or by 41 orders of magnitude. Yet modest changes in the relative strengths of any of these forces and their associated constants would produce dramatic changes in the universe, rendering it unsuitable for life of any imaginable type. Several examples to illustrate this fine-tuning of our universe are presented next.
Balancing Gravity and Electromagnetism Forces - Fine Tuning Our Star and Its Radiation
The electromagnetic force is 1038 times stronger than the gravity force. Gravity draws hydrogen into stars, creating a high temperature plasma. The protons in the plasma must overcome their electromagnetic repulsion to fuse. Thus the relative strength of the gravity force to the electromagnetic force determines the rate at which stars "burn" by fusion. If this ratio of strengths were altered to1032 instead of 1038 (i.e., if gravity were much stronger), stars would be a billion times less massive and would burn a million times faster.{21}
Electromagnetic radiation and the light spectrum also depend on the relative strengths of the gravity and electromagnetic forces and their associated constants. Furthermore, the frequency distribution of electromagnetic radiation produced by the sun must be precisely tuned to the energies of the various chemical bonds on Earth. Excessively energetic photons of radiation (i.e., the ultraviolet radiation emitted from a blue giant star) destroy chemical bonds and destabilize organic molecules. Insufficiently energetic photons (e.g., infrared and longer wavelength radiation from a red dwarf star) would result in chemical reactions that are either too sluggish or would not occur at all. All life on Earth depends upon fine-tuned solar radiation, which requires, in turn, a very precise balancing of the electromagnetic and gravitational forces.
As previously noted, the chemical bonding energy relies upon quantum mechanical calculations that include the electromagnetic force, the mass of the electron, the speed of light (c), and Planck's constant (h). Matching the radiation from the sun to the chemical bonding energy requires that the magnitude of six constants be selected to satisfy the following inequality, with the caveat that the two sides of the inequality are of the same order of magnitude, guaranteeing that the photons are sufficiently energetic, but not too energetic.{22}



 mp2 G/[_ c]>~[e2/{_c}]12[me/mp]4(3)
Substituting the values in Table 2 for h, c, G, me, mp, and e (with units adjusted as required) allows Equation 3 to be evaluated to give:



 5.9 x 10-39 > 2.0 x 10-39(4)
In what is either an amazing coincidence or careful design by an intelligent Creator, these constants have the very precise values relative to each other that are necessary to give a universe in which radiation from the sun is tuned to the necessary chemical reactions that are essential for life. This result is illustrated in Figure 3, where the intensity of radiation from the sun and the biological utility of radiation are shown as a function of the wavelength of radiation. The greatest intensity of radiation from the sun occurs at the place of greatest biological utility.
Figure 3.
Laws of Physics, fine-tuned for a life-permitting universe Fig3
(Figure 3.1.)

Laws of Physics, fine-tuned for a life-permitting universe Fig31
(Figure 3.2.)

Laws of Physics, fine-tuned for a life-permitting universe Fig32
(Figure 3.3.)

Laws of Physics, fine-tuned for a life-permitting universe Fig33
(Figure 3.4.)
Figure 3. The visible portion of the electromagnetic spectrum (~1 micron) is the most intense radiation from the sun (Figure 3.1); has the greatest biological utility (Figure 3.2); and passes through atmosphere of Earth (Figure 3.3) and water (Figure 3.4) with almost no absorption. It is uniquely this same wavelength of radiation that is idea to foster the chemistry of life. This is either a truly amazing series of coincidences or else the result of careful design.
Happily, our star (the sun) emits radiation (light) that is finely tuned to drive the chemical reactions necessary for life. But there is still a critical potential problem: getting that radiation from the sun to the place where the chemical reactions occur. Passing through the near vacuum of space is no problem. However, absorption of light by either Earth's atmosphere or by water where the necessary chemical reactions occur could render life on Earth impossible. It is remarkable that both the Earth's atmosphere and water have "optical windows" that allow visible light (just the radiation necessary for life) to pass through with very little absorption, whereas shorter wavelength (destructive ultraviolet radiation) and longer wavelength (infrared) radiation are both highly absorbed, as seen in Figure 3.{23} This allows solar energy in the form of light to reach the reacting chemicals in the universal solvent, which is water. The Encyclopedia Britannica{24} observes in this regard:
Considering the importance of visible sunlight for all aspects of terrestrial life, one cannot help being awed by the dramatically narrow window in the atmospheric absorption...and in the absorption spectrum of water.
It is remarkable that the optical properties of water and our atmosphere, the chemical bonding energies of the chemicals of life, and the radiation from the sun are all precisely harmonized to allow living systems to utilize the energy from the sun, without which life could not exist. It is quite analogous to your car, which can only run using gasoline as a fuel. Happily, but not accidentally, the service station has an ample supply of exactly the right fuel for your automobile. But someone had to drill for and produce the oil, someone had to refine it into liquid fuel (gasoline) that has been carefully optimized for your internal combustion engine, and others had to truck it to your service station. The production and transportation of the right energy from the sun for the metabolic motors of plants and animals is much more remarkable, and hardly accidental.
Finally, without this unique window of light transmission through water, which is constructed upon an intricate framework of universal constants, vision would be impossible and sight-communication would cease, since living tissue and eyes are composed mainly of water.
Nuclear Strong Force and Electromagnetic Force - Finely Balanced for a Universe Rich in Carbon and Oxygen (and therefore water)
The nuclear strong force is the strongest force within nature, occurring at the subatomic level to bind protons and neutrons within atomic nuclei.{25} Were we to increase the ratio of the strong force to the electromagnetic force by only 3.4 percent, the result would be a universe with no hydrogen, no long-lived stars that burn hydrogen, and no water (a molecule composed of two hydrogen atoms and one oxygen atom)--our "universal solvent" for life. Likewise, a decrease of only 9 percent in the strong force relative to the electromagnetic force would decimate the periodic table of elements. Such a change would prevent deuterons from forming from the combination of protons and neutrons. Deuterons, in turn, combine to form helium, then helium fuses to produce beryllium, and so forth.{26}
Within the nucleus, an even more precise balancing of the strong force and the electromagnetic force allows for a universe with an abundance of organic building blocks, including both carbon and oxygen.{27} Carbon serves as the universal connector for organic life and is an optimal reactant with almost every other element, forming bonds that are stable but not too stable, allowing compounds to be formed and disassembled. Oxygen is a component of water, the necessary universal solvent where life chemistry can occur. This is why when people speculate about life on Mars, they first look for signs of organic molecules (ones containing carbon) and signs that Mars once had water.
Quantum physics examines the most minute energy exchanges at the deepest levels of the cosmic order. Only certain energy levels are permitted within nuclei-like steps on a ladder. If the mass-energy for two colliding particles results in a combined mass-energy that is equal to or slightly less than a permissible energy level on the quantum "energy ladder," then the two nuclei will readily stick together or fuse on collision, with the energy difference needed to reach the step being supplied by the kinetic energy of the colliding particles. If this mass-energy level for the combined particles is exactly right, then the collisions are said to have resonance, which is to say that there is a high efficiency within the collision. On the other hand, if the combined mass-energy results in a value that is slightly higher than one of the permissible energy levels on the energy ladder, then the particles will simply bounce off each other rather than fusing, or sticking together.
It is clear that the step sizes between quantum nuclear energy levels depends on the balance between the strong force and the electromagnetic force, and these steps must be tuned to the mass-energy levels of various nuclei for resonance to occur and give an efficient conversion by fusion of lighter element into carbon, oxygen and heavier elements.
In 1953, Sir Fred Hoyle et al. predicted the existence of the unknown resonance energy level for carbon, and it was subsequently confirmed through experimentation.{28} In 1982, Hoyle offered a very insightful summary of the significance he attached to his remarkable predictions.
From 1953 onward, Willy Fowler and I have always been intrigued by the remarkable relation of the 7.65 MeV energy level in the nucleus of 12 C to the 7.12 MeV level in 16 O. If you wanted to produce carbon and oxygen in roughly equal quantities by stellar nucleosynthesis, these are the two levels you would have to fix, and your fixing would have to be just where these levels are actually found to be. Another put-up job? Following the above argument, I am inclined to think so. A common sense interpretation of the facts suggests that a super intellect has "monkeyed" with the physics as well as the chemistry and biology, and there are no blind forces worth speaking about in nature.{29}
The Rest Mass of Subatomic Particles - Key to Universe Rich in Elemental Diversity
Scientists have been surprised to discover the extraordinary tuning of the masses of the elementary particles to each other and to the forces in nature. Stephen Hawking has noted that the difference in the rest mass of the neutron and the rest mass of the proton must be approximately equal to twice the mass of the electron. The mass-energy of the proton is 938.28 MeV and the mass-energy of the neutron is 939.57 MeV. The mass-energy of the electron is 0.51 MeV, or approximately half of the difference in neutron and proton mass-energies, just as Hawking indicated it must be.{30} If the mass-energy of the proton plus the mass-energy of the electron were not slightly smaller than the mass-energy of the neutron, then electrons would combine with protons to form neutrons, with all atomic structure collapsing, leaving an inhospitable world composed only of neutrons.
On the other hand, if this difference were larger, then neutrons would all decay into protons and electrons, leaving a world of pure hydrogen, since neutrons are necessary for protons to combine to build heavier nuclei and the associated elements. As things stand, the neutron is just heavy enough to ensure that the Big Bang would yield one neutron to every seven protons, allowing for an abundant supply of hydrogen for star fuel and enough neutrons to build up the heavier elements in the universe.{31} Again, a meticulous inner design assures a universe with long-term sources of energy and elemental diversity.
The Nuclear Weak Coupling Force - Tuned to Give an Ideal Balance Between Hydrogen (as Fuel for Sun) and Heavier Elements as Building Blocks for Life
The weak force governs certain interactions at the subatomic or nuclear level. If the weak force coupling constant were slightly larger, neutrons would decay more rapidly, reducing the production of deuterons, and thus of helium and elements with heavier nuclei. On the other hand, if the weak force coupling constant were slightly weaker, the Big Bang would have burned almost all of the hydrogen into helium, with the ultimate outcome being a universe with little or no hydrogen and many heavier elements instead. This would leave no long-lived stars and no hydrogen-containing compounds, especially water. In 1991, Breuer noted that the appropriate mix of hydrogen and helium to provide hydrogen-containing compounds, long-term stars, and heavier elements is approximately 75 percent hydrogen and 25 percent helium, which is just what we find in our universe.{32}
This is obviously only an illustrative--but not exhaustive--list of cosmic "coincidences." Clearly, the four forces in nature and the universal constants must be very carefully calibrated or scaled to provide a universe that satisfies the key requirements for life that we enumerated in our initial "needs statement": for example, elemental diversity, an abundance of oxygen and carbon, and a long-term energy source (our sun) that is precisely matched to the bonding strength of organic molecules, with minimal absorption by water or Earth's terrestrial atmosphere.
John Wheeler, formerly Professor of Physics at Princeton, in discussing these observations asks:
Is man an unimportant bit of dust on an unimportant planet in an unimportant galaxy somewhere in the vastness of space? No! The necessity to produce life lies at the center of the universe's whole machinery and design.....Slight variations in physical laws such as gravity or electromagnetism would make life impossible.{33}

Blueprint for a Habitable Universe: The Criticality of Initial or Boundary Conditions

As we already suggested, correct mathematical forms and exactly the right values for them are necessary but not sufficient to guarantee a suitable habitat for complex, conscious life. For all of the mathematical elegance and inner attunement of the cosmos, life still would not have occurred had not certain initial conditions been properly set at certain critical points in the formation of the universe and Earth. Let us briefly consider the initial conditions for the Big Bang, the design of our terrestrial "Garden of Eden," and the staggering informational requirements for the origin and development of the first living system.
The Big Bang
The "Big Bang" follows the physics of any explosion, though on an inconceivably large scale. The critical boundary condition for the Big Bang is its initial velocity. If this velocity is too fast, the matter in the universe expands too quickly and never coalesces into planets, stars, and galaxies. If the initial velocity is too slow, the universe expands only for a short time and then quickly collapses under the influence of gravity. Well-accepted cosmological models{34} tell us that the initial velocity must be specified to a precision of 1/1060. This requirement seems to overwhelm chance and has been the impetus for creative alternatives, most recently the new inflationary model of the Big Bang.
Even this newer model requires a high level of fine-tuning for it to have occurred at all and to have yielded irregularities that are neither too small nor too large for the formation of galaxies. Astrophysicists originally estimated that two components of an expansion-driving cosmological constant must cancel each other with an accuracy of better than 1 part in 1050. In the January 1999 issue of Scientific American, the required accuracy was sharpened to the phenomenal exactitude of 1 part in 10123.{35} Furthermore, the ratio of the gravitational energy to the kinetic energy must be equal to 1.00000 with a variation of less than 1 part in 100,000. While such estimates are being actively researched at the moment and may change over time, all possible models of the Big Bang will contain boundary conditions of a remarkably specific nature that cannot simply be described away as "fortuitous".
The Uniqueness of our "Garden of Eden"
Astronomers F. D. Drake{36} and Carl Sagan{37} speculated during the 1960s and 1970s that Earth-like places in the universe were abundant, at least one thousand but possibly as many as one hundred million. This optimism in the ubiquity of life downplayed the specialness of planet Earth. By the 1980s, University of Virginia astronomers Trefil and Rood offered a more sober assessment in their book, Are We Alone? The Possibility of Extraterrestrial Civilizations.{38} They concluded that it is improbable that life exists anywhere else in the universe. More recently, Peter Douglas Ward and Donald Brownlee of the University of Washington have taken the idea of the Earth's unique place in our vast universe to a much higher level. In their recent blockbuster book, Rare Earth: Why Complex Life is Uncommon in the Universe,{39} they argue that the more we learn about Earth, the more we realize how improbable is its existence as a uniquely habitable place in our universe. Ward and Brownlee state it well:
If some god-like being could be given the opportunity to plan a sequence of events with the expressed goal of duplicating our 'Garden of Eden', that power would face a formidable task. With the best of intentions but limited by natural laws and materials it is unlikely that Earth could ever be truly replicated. Too many processes in its formation involve sheer luck. Earth-like planets could certainly be made, but each would differ in critical ways. This is well illustrated by the fantastic variety of planets and satellites (moons) that formed in our solar system. They all started with similar building materials, but the final products are vastly different from each other . . . . The physical events that led to the formation and evolution of the physical Earth required an intricate set of nearly irreproducible circumstances.{40}
What are these remarkable coincidences that have precipitated the emerging recognition of the uniqueness of Earth? Let us consider just two representative examples, temperature control and plate tectonics, both of which we have alluded to in our "needs statement" for a habitat for complex life.
Temperature Control on Planet Earth
In a universe where water is the primary medium for the chemistry of life, the temperature must be maintained between 0° C and 100° C (32° F to 212° F) for at least some portion of the year. If the temperature on earth were ever to stay below 0° C for an extended period of time, the conversion of all of Earth's water to ice would be an irreversible step. Because ice has a very high reflectivity for sunlight, if the Earth ever becomes an ice ball, there is no returning to the higher temperatures where water exists and life can flourish. If the temperature on Earth were to exceed 100°C for an extended period of time, all oceans would evaporate, creating a vapor canopy. Again, such a step would be irreversible, since this much water in the atmosphere would efficiently trap all of the radiant heat from the sun in a "super-greenhouse effect," preventing the cooling that would be necessary to allow the steam to re-condense to water.{41} This appears to be what happened on Venus.
Complex, conscious life requires an even more narrow temperature range of approximately 5-50° C.{42} How does our portion of real estate in the universe remain within such a narrow temperature range, given that almost every other place in the universe is either much hotter or much colder than planet Earth, and well outside the allowable range for life? First, we need to be at the right distance from the sun. In our solar system, there is a very narrow range that might permit such a temperature range to be sustained, as seen in Fig. 1. Mercury and Venus are too close to the sun, and Mars is too far away. Earth must be within approximately 10% of its actual orbit to maintain a suitable temperature range.{43}
Yet Earth's correct orbital distance from the sun is not the whole story. Our moon has an average temperature of -18° C, while Earth has an average temperature of 33° C; yet each is approximately the same average distance from the sun. Earth's atmosphere, however, efficiently traps the sun's radiant heat, maintaining the proper planetary temperature range. Humans also require an atmosphere with exactly the right proportion of tri-atomic molecules, or gases like carbon dioxide and water vapor. Small temperature variations from day to night make Earth more readily habitable. By contrast, the moon takes twenty-nine days to effectively rotate one whole period with respect to the sun, giving much larger temperature fluctuations from day to night. Earth's rotational rate is ideal to maintain our temperature within a narrow range.


1. https://web.archive.org/web/20110805203154/http://www.leaderu.com/real/ri9403/evidence.html

https://reasonandscience.catsboard.com

Sponsored content



Back to top  Message [Page 1 of 1]

Permissions in this forum:
You cannot reply to topics in this forum